Monday, June 25, 2007
Released at 8:30 a.m. Eastern time

Releases

International trade in culture goods, 2006
Canada’s imports and exports of culture goods declined in 2006. The trade deficit widened to its largest level since 1999, as imports, especially from Canada’s largest trading partners – the United States and China – continued to surpass exports.

Study: Investment and long-term growth in labour productivity, 1961 to 2005
Investment in capital, rather than gains in worker skills or technological change, was the most important factor in the growth in labour productivity in the business sector during the past four decades, according to a new study.

Study: Trade and the industrial specialization of Canadian manufacturing regions, 1974 to 1999

Aircraft movement statistics, May 2007

Sawmills, April 2007

Canadian Internet Use Survey, 2005

Industry productivity database

New products
International trade in culture goods
2006

Canada’s imports and exports of culture goods declined in 2006. The trade deficit widened to its largest level since 1999, as imports, especially from Canada’s largest trading partners – the United States and China – continued to surpass exports.

Canada imported $3.9 billion worth of culture goods from the world, a 3.2% decline from 2005. At the same time, exports fell 12.7% to $2.1 billion, the third consecutive decline.

As a result, Canada’s trade deficit in culture goods expanded from $1.7 billion in 2005 to $1.8 billion in 2006, the largest deficit since 1999.

The trade deficit with the United States, Canada’s largest trading partner, expanded by $236 million to nearly $1.2 billion. This was the result of a 12.4% fall in exports, which far exceeded a 0.9% decline in imports.

Since 2001, China has held second place in terms of imports of culture goods. China is also currently the second largest contributor to Canada’s trade imbalance, as imports from China are more than 20 times larger than Canada’s culture exports.

Three-quarters of culture imports are writing and published works

Writing and published works represented nearly three-quarters (73%) of all the culture goods imported into Canada in 2006.

Imports of books, newspapers and periodicals and other printed matter grew $25.8 million in 2006 to $2.8 billion. Items such as technical, scientific and professional books, text books for school, art and pictorial books, journals, periodicals and cards are included in this culture category.

The second largest contributor to culture imports was the film and video category (7.3%). Imports in this culture category declined by almost $75 million from 2005. The price of items in the video category, mainly DVDs, has been decreasing since 2000.
Books, film and advertising material represent over half of culture exports

Three commodity groups accounted for more than half of Canada’s total exports of culture goods: books, which represented 19%, film (18%), and advertising material (nearly 16%).

Canada’s exports of culture goods fell for the third consecutive year. Gains in exports within the other visual arts, architecture and heritage categories were not strong enough to offset declines in other categories, such as video, other printed materials, advertising and photography.

The Canadian dollar has been depreciating against the Euro and the UK pound sterling, making Canadian exports more attractive to the European Union and the United Kingdom. However, 90% of Canadian culture goods exports go to the United States. The drop in the American dollar relative to the Canadian dollar has consequently made Canada’s exports less attractive to its largest trading partner.

Top trading partners: US, China, France, UK

Canada’s top two-way trading partners (imports plus exports) in culture goods for 2006 were the United States, China, France and the United Kingdom.

In 2006, the United States was still Canada’s largest trading partner by far, accounting for 90% of all exported culture goods and 78% of all imports.

Canadians imported mainly books and newspapers from the United States. For every $10 of culture goods Canadians imported from the United States, $7.61 were spent on writing and published works, $0.85 on film and video, and $0.58 on advertising. The remainder was spread among sound recordings, photography and original art.

Canada’s exports to the United States were more diversified. For every $10 of culture goods the United States bought from Canada, $3.80 were spent on books, newspapers and periodicals and other printed material, $2.68 on film and video, and $1.67 on advertising. Photography, sound recordings and visual arts accounted for the rest.

For the last six years, imports of culture goods from China have been the second largest, after the United States. In 2006, imports from China increased 5.9% to $295 million, while exports to China rose 3.9% to $13.8 million. Almost half of Canada’s imports of culture goods from China were printed books.

In 2006, exports to the United Kingdom dropped by almost $31 million from 2005. The value of exports of video, other printed material, newspapers and periodicals, and photography recorded the largest decline. Exports of culture goods to the United Kingdom nevertheless remained the second largest for the seventh consecutive year. Canada exported mainly books and videos to the United Kingdom.

Exports to France were the third largest, books accounting for 60% of them.

Definitions, data sources and methods: survey number 5088.

Detailed and summary data tables for the culture goods trade, by culture category and subcategory, along with cross-tabulations of trade between Canada and selected countries in table format (87-007-XWE, free) are now available on our website from the Publications module. These tables have been created based on the Canadian Framework for Culture Statistics (81-595-MIE2004021, free). The Culture Goods Trade Data User Guide (81-595-MIE2006040, free) is also available.

Data users can also request custom tabulations on a cost-recovery basis.

For more information, or to enquire about the concepts, methods or data quality of this release, contact Client Services (toll-free 1-800-307-3382; 613-951-5418; fax: 613-951-1333; culture@statcan.ca), Culture, Tourism and the Centre for Education Statistics.
Study: Investment and long-term growth in labour productivity
1961 to 2005

Investment in capital, rather than gains in worker skills or technological change, was the most important factor in the growth in labour productivity in the business sector during the past four decades, according to a new study.

Between 1961 and 2005, labour productivity, one of the key indicators of an economy’s health, rose at an annual rate of 2.1%. This study assessed the contribution of three main components of this growth.

These components are: gains that originate from changes in capital intensity (the amount of capital per hour worked); gains from changes in labour composition (involving more highly educated or more experienced workers); and growth in multifactor productivity, which is generally everything that cannot be accounted for by labour and capital.

The study found that during this 45-year period, increases in capital intensity were the most important factor, contributing about 55% of growth in labour productivity. (In 2005 alone, capital intensity accounted for about three-quarters of the growth.)

Multifactor productivity, the second most important factor, accounted for about one-quarter of the growth in labour productivity during this period. Growth in this area is often associated with technological change, organizational change or economies of scale.

The remainder, about 20%, came from changes in the composition of labour. A positive labour composition effect reflects the increase in the average educational attainment and experience levels of workers.

Labour productivity is a measure of the real gross domestic product (GDP) per hour worked. Over time, it serves to improve the population’s standard of living and business competitiveness.

Productivity gains are important because they are closely connected with changes in real wages over the long run.

Substantial changes in structure of capital and labour

Two key factors in the growth of labour productivity – the composition of capital and the types of labour – have both changed during the past four decades.

In terms of capital, there has been a long-term shift towards machinery and equipment, and away from structure capital, land and inventories in the business sector. In the machinery and equipment category, information and communications technologies (ICT) have increased the most.

Between 1961 and 2005, non-ICT capital services increased at an annual rate of 3.9%, while ICT capital services rose at an annual rate of 14.5%. These ICT services increased dramatically as the price of ICT capital declined relative to other forms of capital. Canadian businesses have made large investments in ICTs to take advantage of this dramatic decline in prices.

At the same time, the composition of Canada’s labour force has changed markedly. There have also been dramatic changes in the education qualifications of the labour force. The proportion of workers with only a high school education has declined steadily, while the percentage with postsecondary degrees has risen.

The share of labour compensation of workers with university degrees increased from 7.1% to 23.5% between 1961 and 2003. In contrast, the share of labour compensation of workers with primary or secondary education declined from 89.2% to 31.8% during that period.

Note to readers

This release is based on the report “Investment and long-term productivity growth in the Canadian business sector” as well as on a new industry database on productivity, released today.

This paper has three main objectives. Firstly, it provides a comprehensive overview of trends in labour productivity growth in the Canadian business sector over the last four decades.

Secondly, it examines the contribution of investment in tangible assets, human capital and multifactor productivity growth to these trends.

Thirdly, it analyses the industrial sources of aggregate growth in productivity, focusing on the contribution that goods and services sectors make to aggregate productivity growth.

There is a continued interest among analysts in the role that new economy industries and natural resource industries (old economy) play in Canada’s economic growth. Consequently, this paper also examines the relative contribution these two sectors make to aggregate productivity growth.

The residual portion of labour productivity growth that is not accounted for by increased capital intensity and skills upgrading is called growth in multifactor productivity.

Multifactor productivity measures at Statistics Canada are derived from a growth accounting framework that allows analysts to isolate the effects on labour productivity growth of increases in capital intensity and skills upgrading.

The data released today reflects a new industry database that, for the first time, provides a series for output, labour and capital in the new North American Industry Classification System back to 1961. The Canadian Productivity Accounts has developed these series using similar methods to backcast each series so that they would be consistent with the methods used by the System of National Accounts. Additional improvements have been made to both the labour and capital estimates in the productivity accounts. For more information on the industry productivity database, consult the Canadian System of National Accounts module of our website.
Contribution of capital intensity has increased markedly over time

In general, the study found that the contribution of capital intensity to the growth in labour productivity increased markedly over time.

During the 1960s and early 1970s, ICTs accounted for only a small portion of the contribution that the growth in capital services made to the growth in labour productivity. However, during the 1990s and into the turn of the millennium, ICTs accounted for about 60% of the total contribution of capital to labour productivity growth.

A large increase in capital intensity was mainly responsible for the improvement in labour productivity growth in 2005.

The increase in labour productivity in 2005 was the strongest since 2000.

The impact of capital intensity accounted for more than three-quarters of the acceleration in labour productivity growth in 2005. The remainder, about 20%, came from the increase in multifactor productivity growth. The rate of growth in capital intensity almost tripled from 0.6% on average between 2000 and 2004 to 1.6% in 2005.

In contrast, improvements in the labour force due to higher levels of education and greater experience were virtually unchanged between the period from 2000 to 2004 and in 2005.

Since 2000, growth in labour productivity has in fact slowed considerably from the gains recorded between 1989 and 2000, particularly in the mining and manufacturing sectors. This slowdown in labour productivity growth largely reflects a decline in growth of multifactor productivity.

Capital intensity dominant in natural resources industries

The economy consists of industries that range from highly capital intensive to more labour intensive.

In terms of economic output, capital accumulation has been the dominant source of growth in the two natural resources industries (mining and oil and gas extraction). It has also been important in the finance, insurance and real estate industries.

Labour input has been the most important contributor to growth in economic output in professional services as well as in education and health care services industries, both of which are labour-intensive. But even in those, capital is an important source of output growth.

In terms of labour productivity, the contributions of the various components to growth have differed substantially across industries.

In some industries, the deepening of capital was the dominant contributor to labour productivity growth. However, in these industries, there was no consistent pattern as to whether multifactor productivity growth makes higher or even positive contributions to labour productivity growth.

Increasing the quality of the labour force was important in most industries, though less important than the growth in multifactor productivity in most industries.

As well, there is less variability across industries in the contribution of skill upgrading than there is in either capital deepening or in multifactor productivity growth. The growth in the knowledge economy is being felt across all industries.

The research paper "Investment and productivity growth in the Canadian business sector: 1961 to 2002", as part of The Canadian Productivity Review (15-206-XIE2007006, free), is now available from the Publications module of our website.

The industry productivity database used in the research paper is available in Tables 383-0021 and 383-0022 on CANSIM. Table 383-0021 provides a series for multifactor productivity, value-added, capital input and labour input in the aggregate business sector and major sub-sectors. Table 383-0022 provides series on multifactor productivity, gross output, value-added, capital, labour and intermediate inputs at a detailed industry level.

More studies related to productivity are available online (http://www.statcan.ca/english/studies/economic.htm).

For more information, or to enquire about the concepts, methods or data quality of this release, contact John Baldwin (613-951-8588) or Wulong Gu (613-951-0754), Micro-economic Analysis Division.
Sources of labour productivity growth in the business sector

<table>
<thead>
<tr>
<th>Period</th>
<th>Real gross domestic product</th>
<th>Hours Worked</th>
<th>Labour productivity</th>
<th>% average annual growth</th>
</tr>
</thead>
<tbody>
<tr>
<td>1961 to 1973</td>
<td>3.8</td>
<td>1.7</td>
<td>2.1</td>
<td>1961 to 1973</td>
</tr>
<tr>
<td>1973 to 1979</td>
<td>5.6</td>
<td>2.0</td>
<td>3.6</td>
<td>1973 to 1979</td>
</tr>
<tr>
<td>1979 to 1989</td>
<td>4.1</td>
<td>2.0</td>
<td>2.0</td>
<td>1979 to 1989</td>
</tr>
<tr>
<td>1989 to 2000</td>
<td>3.3</td>
<td>1.9</td>
<td>1.3</td>
<td>1989 to 2000</td>
</tr>
<tr>
<td>2000 to 2005</td>
<td>3.0</td>
<td>1.2</td>
<td>1.8</td>
<td>2000 to 2005</td>
</tr>
</tbody>
</table>

Sources of labour productivity growth

<table>
<thead>
<tr>
<th>Contribution of capital intensity</th>
<th>Contribution of labour composition</th>
<th>Multifactor productivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1961 to 1973</td>
<td>1.1</td>
<td>0.4</td>
</tr>
<tr>
<td>1973 to 1979</td>
<td>1.4</td>
<td>0.7</td>
</tr>
<tr>
<td>1979 to 1989</td>
<td>1.6</td>
<td>0.2</td>
</tr>
<tr>
<td>1989 to 2000</td>
<td>1.0</td>
<td>0.4</td>
</tr>
<tr>
<td>2000 to 2005</td>
<td>0.9</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>0.8</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Note: Contribution is the product of the variable and its share in nominal gross domestic product. Numbers may not add up due to rounding.

Sources of labour productivity growth by industry, 1961 to 2005

<table>
<thead>
<tr>
<th>Industry</th>
<th>Labour productivity growth</th>
<th>Contribution to labour productivity growth</th>
<th>Capital intensity</th>
<th>Labour composition</th>
<th>Multifactor productivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goods-producing industries</td>
<td>2.7</td>
<td>1.2</td>
<td>0.5</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Services-producing industries</td>
<td>1.8</td>
<td>1.3</td>
<td>0.4</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Agriculture, forestry, fishing and hunting</td>
<td>3.6</td>
<td>1.3</td>
<td>0.3</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Mining and oil and gas extraction</td>
<td>0.8</td>
<td>2.3</td>
<td>0.2</td>
<td>-1.6</td>
<td>-1.6</td>
</tr>
<tr>
<td>Utilities</td>
<td>2.2</td>
<td>0.9</td>
<td>0.1</td>
<td>1.1</td>
<td>1.1</td>
</tr>
<tr>
<td>Construction</td>
<td>1.2</td>
<td>0.4</td>
<td>0.3</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>3.0</td>
<td>0.8</td>
<td>0.4</td>
<td>1.7</td>
<td>1.7</td>
</tr>
<tr>
<td>Wholesale trade</td>
<td>2.7</td>
<td>0.5</td>
<td>0.4</td>
<td>1.9</td>
<td>1.9</td>
</tr>
<tr>
<td>Retail trade</td>
<td>2.6</td>
<td>0.6</td>
<td>0.4</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Transportation and warehousing</td>
<td>2.5</td>
<td>0.6</td>
<td>0.3</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Information and cultural industries</td>
<td>3.6</td>
<td>1.4</td>
<td>0.3</td>
<td>1.9</td>
<td>1.9</td>
</tr>
<tr>
<td>Finance, insurance, real estate and renting and leasing</td>
<td>1.0</td>
<td>1.9</td>
<td>0.2</td>
<td>-1.1</td>
<td>-1.1</td>
</tr>
<tr>
<td>Professional, scientific and technical services</td>
<td>0.8</td>
<td>2.9</td>
<td>0.3</td>
<td>-2.3</td>
<td>-2.3</td>
</tr>
<tr>
<td>Other services</td>
<td>0.5</td>
<td>1.9</td>
<td>0.3</td>
<td>-1.7</td>
<td>-1.7</td>
</tr>
</tbody>
</table>

Note: Labour productivity is measured as the real gross domestic product (GDP) per hour worked. Contribution is the product of the variable and its share in nominal GDP. Numbers may not add up due to rounding.
Study: Trade and the industrial specialization of Canadian manufacturing regions
1974 to 1999

Canada’s manufacturing sector more than doubled its level of export intensity – that is, exports as a proportion of total manufacturing output – between 1974 and 1999.

However, this growing integration into the global markets through trade has not been accompanied by an increase in the industrial specialization of manufacturing economies in the various regions of the country, according to a new study. This is particularly true of the post-1990 free-trade era.

This study examines how trade has influenced the level and change in industrial specialization experienced by regional manufacturing economies during this 25-year period. It has long been thought that increased trade might lead to greater industrial specialization (the degree to which employment in particular places is concentrated in specific industries). Higher levels of industrial specialization are associated with greater vulnerability to economic shocks resulting from the loss of a key industry.

In 1974, exports accounted for only 18% of total manufacturing output. By 1999, this proportion had more than doubled to 43%.

The study found that across Canada’s various regions, higher levels of export intensity were positively associated with higher levels of industrial specialization. However, subsequent increases in export intensity during the 1990s were not strongly associated with further increases in specialization.

As a result, the relationship between specialization and export intensity weakens over time. Regions that were more dependent on world markets through trade were less likely to be specialized in a small number of industries. This is related to shifts in trade intensity that see sectors heavily reliant on foreign markets becoming less so over time, and vice versa, while, at the same time, there are few associated changes in industry specialization.

Over the period studied, the regions in which the association between export intensity and specialization was highest were manufacturing regions that tend to be more closely tied to their natural resource bases. These regions tended to be rural or located in Western Canada and Atlantic Canada.

The research paper “The ebb and flow of comparative advantage: Trade and the industrial specialization of Canadian manufacturing regions, 1974 to 1999”, as part of the Economic Analysis Research Paper Series (11F0027MIE2007044, free), is now available from the Publications module of our website.

More studies related to economic geography and international trade are available online (http://www.statcan.ca/english/studies/economic.htm).

For more information, or to enquire about the concepts, methods or data quality of this release, contact Mark Brown (613-951-7292), Micro-economic Analysis Division.

Aircraft movement statistics
May 2007 (preliminary)

Aircraft take-offs and landings at the 42 Canadian airports with NAV CANADA air traffic control towers were up 17.1% in May over May 2006. This marks the 12th consecutive increase in year-over-year monthly comparisons.

Take-offs and landings reached 468,802 movements in May compared with 400,425 movements in May 2006. The variations ranged from an increase of 161.9% for Windsor to an 8.0% decline for St. John’s. Overall, 34 airports reported increases in aircraft movements.

Itinerant movements (flights from one airport to another) rose 10.9% (+30,785 movements) in May from May 2006. Local movements (flights that remain in the vicinity of the airport) increased by 31.7% (+68,377 movements) in May from May 2006.

Available on CANSIM: table 401-0005.

Definitions, data sources and methods: survey number 2715.

The May 2007 issue of Aircraft Movement Statistics, Vol. 6, no. 5 (51F0001PWE, free), is now available from the Publications module of our website.

For more information, or to enquire about the concepts, methods or data quality of this release, contact Kathie Davidson (613-951-0141; fax: 613-951-0010; aviationstatistics@statcan.ca), Transportation Division.

Sawmills
April 2007

Monthly lumber production by sawmills declined 2.1% to 6 583.5 thousand cubic metres in April.

Sawmills shipped 6 914.3 thousand cubic metres of lumber in April, an increase of 5.1% from March. Compared with April 2006, lumber shipments fell 7.0%.

Between March and April, stocks edged down 1.9% to 9 167.2 thousand cubic metres.
Available on CANSIM: table 303-0009.

Definitions, data sources and methods: survey number 2134.

The April 2007 issue of Sawmills, Vol. 61, no. 4 (35-003-XWE, free) is now available from the Publications module of our website.

To order data, to obtain more information, or to enquire about the concepts, methods or data quality of this release, contact the dissemination officer (toll-free 1-866-873-8789; 613-951-9497; manufact@statcan.ca), Manufacturing, Construction and Energy Division.

Canadian Internet Use Survey 2005

The public use microdata file from the 2005 Canadian Internet Use Survey (CIUS) is now available. This file contains information collected from more than 30,000 respondents aged 18 and over residing in private households in the provinces.

The public use microdata file provides information about the extent to which individual Canadians use the Internet, as well as the scope of their Internet use. The survey content includes the location of use (e.g., at home or at work), the frequency and intensity of use, the specific uses of the Internet from the home, the purchase of products and services (electronic commerce), and other issues related to Internet use (such as concerns over privacy). This content is supplemented by information on socio-economic characteristics (e.g., age, income and education) and some sub-provincial geographic detail.

Definitions, data sources and methods: survey number 4432.

The Canadian Internet Use Survey: Public Use Microdata File, 2005, is available on CD-ROM (56M0003XCB, $2,350), along with complete documentation including a user guide and a codebook. See How to order products.

Results from the 2005 CIUS were released in The Daily on August 15, 2006 and in The Daily on November 1, 2006. These releases also featured CANSIM tables and summary tables.

To obtain a copy of the CD-ROM, for more information on related products and services, or to enquire about the concepts, methods or data quality of this release, contact Larry McKeown (toll-free 1-800-263-1136; 613-951-2582; fax: 613-951-0009; larry.mckeown@statcan.ca), Science, Innovation and Electronic Information Division.

Industry productivity database

A new experimental industry productivity database is now available. The database provides, for the first time, a series for multifactor productivity output and inputs that include capital (K), labour (L), energy (E), materials (M) and purchased services (S) in the new North American Industry Classification system back to 1961. The Canadian Productivity Accounts has developed this KLEMS database using similar methods to backcast each series so that they would be consistent with the methods used by the System of National Accounts.

Table 383-0021 provides a series for multifactor productivity, value-added, capital input and labour input in the aggregate business sector and major sub-sectors. Table 383-0022 provides series on multifactor productivity, gross output, value-added, capital, labour and intermediate inputs at a detailed industry level. For more information on the industry productivity database, consult the Canadian System of National Accounts module of our website.

For more information, or to enquire about the concepts, methods or data quality of this release, contact John Baldwin (613-951-8588) or Wulong Gu (613-951-0754), Micro-economic Analysis Division.
New products

Latest Developments in the Canadian Economic Accounts Catalogue number 13-605-XIE (free).

Sawmills, April 2007, Vol. 61, no. 4 Catalogue number 35-003-XWE (free).

Aircraft Movement Statistics, Monthly, May 2007, Vol. 6, no. 5 Catalogue number 51F0001PWE (free).

Canadian Internet Use Survey - Public Use Microdata File, 2005 Catalogue number 56M0003XCB ($2350).

Culture Goods Trade: Data Tables, 2006 Catalogue number 87-007-XWE (free).

All prices are in Canadian dollars and exclude sales tax. Additional shipping charges apply for delivery outside Canada.

Catalogue numbers with an -XWE, -XIB or an -XIE extension are Internet versions; those with -XMB or -XME are microfiche; -XPB or -XPE are paper versions; -XDB or -XDE are electronic versions on diskette; -XCB or -XCE are electronic versions on compact disc; -XVB or -XVE are electronic versions on DVD and -XBB or -XBE a database.

How to order products

To order by phone, please refer to:
- The title
- The catalogue number
- The volume number
- The issue number
- Your credit card number.

From Canada and the United States, call: 1-800-267-6677
From other countries, call: 1-613-951-2800
To fax your order, call: 1-877-287-4369
For address changes or account inquiries, call: 1-877-591-6963

To order by mail, write to: Statistics Canada, Finance, 6th floor, R.H. Coats Bldg., Ottawa, K1A 0T6. Include a cheque or money order payable to Receiver General of Canada/Publications. Canadian customers add 6% GST and applicable PST.

To order by Internet, write to: infostats@statcan.ca or download an electronic version by accessing Statistics Canada’s website (www.statcan.ca). From the Our products and services page, under Browse our Internet publications, choose For sale.

Authorized agents and bookstores also carry Statistics Canada’s catalogued publications.