

Current as of June 21st, 2016

**Substance Risk Evaluation for Determining Environmental Emergency
Planning under the *Environmental Emergency Regulations* Set under the
Canadian Environmental Protection Act, 1999 (CEPA 1999)**

**Antimony Oxide
(CAS No. 1309-64-4)**

Risk Evaluation Conclusion:

- Threshold quantity of 0.22 tonnes (minimum concentration 1%) due to carcinogenicity
- Is a candidate for the *Environmental Emergency Regulation*

1.0 INTRODUCTION

The *Environmental Emergency Regulations*, developed under Part 8 of the CEPA 1999 (Government of Canada, 2011), establish a list of substances for which fixed facilities must notify Environment Canada that they store or use the substance on-site, by providing notices to Environment Canada, reporting when the substance is released into the environment, and developing an environmental emergency plan (E2 plan) for each substance stored or used at a fixed facility at or above specified threshold quantities.

To determine if a substance is a candidate to be added to the *Environmental Emergency Regulations*, Environment Canada developed a risk evaluation methodology based on the following hazard categories:

- Physical: flammable and combustible or oxidizing substances, or those having a potential to cause vapour cloud explosions or pool fires.
- Human Health: substances that are toxic by inhalation, are carcinogenic, or are corrosive.
- Environmental Health: substances that are: corrosive, persistent, bioaccumulative, or aquatically toxic.

For more information on the methodology for setting threshold quantities in the Environmental Emergency Regulations, please refer to Environment Canada (2015).

Antimony oxide (CAS No. 1309-64-4) was selected for risk evaluation because it is a substance (under the Government of Canada's Chemicals Management Plan [<http://www.ec.gc.ca/ese-ees/default.asp?lang=En&n=9889ABB5-1>]) that, if spilled, could be immediately harmful to humans and/or the environment.

Following the risk evaluation, Environment Canada recommends that this substance be proposed for addition to Schedule 1 of the *Environmental Emergency Regulations* at a threshold quantity of 0.22 tonnes with a minimum concentration of 1%.

2.0 SUMMARY OF THE RISK EVALUATION

2.1 Physical Hazard: Flammable, Combustible or Oxidizing Substances

Because antimony oxide does not have an identified flash point (no flash point data were available during the data gathering process) and has a boiling point of 1425°C (HSDB, 2008), this substance does not have the possibility of a vapour cloud explosion.

Therefore, no threshold is set for this substance as a result of its potential for flammability or combustibility.

2.2 Physical Hazard: Potential for Pool Fires

Antimony oxide is a solid and a pool fire would not apply.

2.3 Human Health Hazard: Inhalation Toxicity

Because antimony oxide does not have a vapour pressure greater than 10 mmHg (1.33 kPa) at 25°C (Genium, 2006), the substance does not have sufficient volatility to constitute an inhalation danger.

Therefore, no threshold is set for the inhalation toxicity to humans.

2.4 Human Health Hazard: Carcinogenicity

Because antimony oxide is classified in Group 2B (possibly carcinogenic) of the International Agency for Research on Cancer (IARC, 1989) and Group B (likely to be carcinogenic) of the U.S. Environmental Protection Agency (Calabrese and Kenyon, 1991), and because the substance does not have a half-life longer than five years in any medium, a threshold of 0.22 tonnes is set for the carcinogenicity of this substance.

2.5 Human and Environmental Health Hazard: Corrosive Substances

The measured pH is greater than 2 and less than 11.5, therefore this substance is not considered corrosive and there is no associated threshold with this category.

2.6 Environmental Health Hazard: Persistent, Bioaccumulative, or Aquatically Toxic

Lethal concentration

The acute (short-term) aquatic toxicity for antimony oxide has been determined to be non-toxic based on studies of the most sensitive species, Bluegill (*Lepomis macrochirus*), with a concentration (LC50 96 hours) of 530 mg/L (Buccofusco, *et al.*, 1981).

Persistence

Environment Canada determined that antimony oxide is indefinitely persistent in water according to our risk evaluation methodology (Environment Canada, 2015).

Bioaccumulation

Antimony oxide is practically non-bioaccumulative according to our risk evaluation methodology (Environment Canada, 2015).

Threshold

Considering that no data have been gathered for the acute aquatic toxicity, and no modeled data are available for antimony oxide, therefore, no threshold is set for the environmental risk.

2.7 Assigned Concentration

Antimony oxide is subject to the Environmental Emergency Regulations for carcinogenicity. Since antimony oxide is classified as IARC (Group 2B) and EPA (Group B), then the minimum concentration set for antimony oxide is 1% (Environment Canada, 2015).

2.8 Assigned Threshold

Following the risk evaluation methodology developed under section 200 of CEPA 1999, the categories (flammability, combustibility, oxidizers, inhalation toxicity, aquatic toxicity, carcinogenicity, corrosiveness, pool fires) having the lowest scientific threshold will be compared against other risk management considerations. For example, the threshold will be compared to other provincial and federal legislation or voluntary programs that may already provide adequate management of the risk from an environmental emergency. Proposed thresholds may also be modified based on policy and other considerations as assessed during the public consultation period. For more information regarding the determination of thresholds, please refer to the *Implementation Guidelines for the Environmental Emergency Regulations 2011* (Environment Canada, 2011).

Other Considerations

At this time, there are no other considerations to take into account for this substance that would result in an increase or a decrease in the calculated threshold quantity.

Findings

A proposed threshold of 0.22 tonnes with a minimum concentration of 1% is assigned for antimony oxide based on its assessed carcinogenicity and for the fact that this substance is indefinitely persistent. The threshold quantity and its respective concentration will not be finalized until after public consultation.

3.0 CONCLUSION

Information concerning the quantities of antimony oxide (CAS No. 1309-64-4) in use in Canada indicates that the substance exists in commerce. Following the risk evaluation of antimony oxide and taking into consideration the quantities in use in Canada, Environment Canada recommends that this substance be proposed for addition to Schedule 1 of the *Environmental Emergency Regulations* under CEPA 1999 at a threshold quantity of 0.22 tonnes at a minimum concentration of 1%.

Even if the quantity of a substance in use is below the threshold quantity indicated in the *Environmental Emergency Regulations*, Environment Canada recommends that emergency planning be applied to this substance in order to minimize, or prevent, any impacts on humans or the environment in the event of a release of the substance.

4.0 REFERENCES

Buccafusco, RJ, Ells, SJ, Leblanc, GA. 1981. Acute Toxicity of Priority Pollutants to Bluegill (*Lepomis macrochirus*). *Bull. Environ. Contam. Toxicol.* 26(4):446-452.

Calabrese, EJ, Kenyon, EM. 1991. Air toxics and Risk Assessment. Lewis Publishers. Inc. Chelsea, Michigan. ISBN 0-87371-165-3. p. 129-133.

Environment Canada. 2011. Implementation Guidelines for the Environmental Emergency Regulations 2011. Available from:
<http://www.ec.gc.ca/lcpe-cepa/default.asp?lang=En&n=1FB6D405-1>

Environment Canada. 2015. Summary of Risk Evaluation Framework for Determining Quantity Thresholds and Concentrations for Substances under the Environmental Emergency Regulations Set under the Canadian Environmental Protection Act, 1999 (CEPA 1999). Environment Canada. Available from:
<https://www.ec.gc.ca/ee-ue/B2B4A2B2-D46D-460F-BCD9-C742A0F79191/ue-summary-ref-en.pdf>

Genium. 2006. Antimony Oxide. Genium group inc. Available from: <http://www.hz.genium.com/MODULE/module-searchmsds-load.php?MSDSNo=ANT8000&Mode=1>

Government of Canada. 2010. Environment Canada, Health Canada. Final Screening Assessment for Antimony oxide (Antimony oxide) (CAS RN 1309-64-4). Available from: <http://www.ec.gc.ca/ese-ees/default.asp?lang=En&n=9889ABB5-1>

Government of Canada. 2011. Environmental Emergency Regulations, Canadian Environmental Protection Act, 1999. Environment Canada. Registered on December 8, 2011. Available from: <http://www.gazette.gc.ca/rp-pr/p2/2011/2011-12-21/html/sor-dors294-eng.html>

HSDB (Hazardous Substances Data Bank). 2008. Antimony Oxide. United States National Library of Medicine. Available from: <http://toxnet.nlm.nih.gov/cgi-bin/sis/search2/r?dbs+hsdb:@term+@DOCNO+436>

IARC (International Agency for Research on Cancer). 1989. Some Organic Solvents, Resin Monomers and Related Compounds, Pigments and Occupational Exposures in Paint Manufacture and Painting. International Agency for Research on Cancer, World Health Organization. Volume 47. Available from: <http://monographs.iarc.fr/ENG/Monographs/PDFs/index.php>

5.0 FURTHER READING

Ketcheson K, Shrives J. 2010. Comparison of Threshold Quantities for Substances with Final AEGL-2 and IDLH Values under CEPA's Environmental Emergency Regulations. In: Proceedings of the Thirty-third Arctic and Marine Oilspill Program Technical Seminar on Environmental Contamination and Response. Environment Canada: Ottawa (ON). pp. 843-861.

U.S. EPA (U.S. Environmental Protection Agency). 1994. List of Regulated Toxic and Flammable Substances and Thresholds for Accidental Release Prevention. Federal Register, 59(20). Document Number 94-1556. 31. Washington (DC). Available from: <http://www.epa.gov/sites/production/files/2013-11/documents/appendix-a-final.pdf>