Ce contenu a été archivé le 24 juin 2013.

Information archivée dans le Web

Information archivée dans le Web à des fins de consultation, de recherche ou de tenue de documents. Cette dernière n'a aucunelement été modifiée ni mise à jour depuis sa date de mise en archive. Les pages archivées dans le Web ne sont pas assujetties aux normes qui s'appliquent aux sites Web du gouvernement du Canada. Conformément à la Politique de communication du gouvernement du Canada, vous pouvez demander de recevoir cette information dans tout autre format de rechange à la page « Contactez-nous ».
Loi canadienne sur la protection de l’environnement

LISTE DES SUBSTANCES D’INTÉRÊT PRIORITAIRE
RAPPORT D’ÉVALUATION

Phénol

Canada
Données de catalogage avant publication (Canada)

Liste des substances d'intérêt prioritaire, rapport d’évaluation : phénol

(Liste des substances d'intérêt prioritaire)
Publ. aussi en anglais sous le titre : Priority substances list assessment report, phenol.
En tête du titre : Loi canadienne sur la protection de l’environnement.
Publ. en collaboration avec Santé Canada.
Comprend des références bibliographiques.
ISBN 0-662-84220-0
No de cat. En40-215/45F

2. Phénol – Aspect de l’environnement – Canada.
I. Canada. Environnement Canada.
II. Canada. Santé Canada.
III. Coll.

TD758.5.P53P74 1999 363.738'4 C00-980002-6

De plus amples renseignements peuvent être obtenus du site Web d’Environnement Canada à www.ec.gc.ca ou de l’Informatheque au 1 800 668-6767.
Loi canadienne sur la protection de l’environnement

LISTE DES SUBSTANCES D’INTÉRÊT PRIORITAIRE
RAPPORT D’ÉVALUATION

Phénol

Environnement Canada
Santé Canada

Février 2000
Table des matières

Synopsis ... 1

1.0 **Introduction** .. 3

2.0 **Résumé de l’information essentielle à l’évaluation du caractère « toxique » au sens de la LCPE** ... 7

2.1 **Identité et propriétés physiques et chimiques** ... 7

2.2 **Caractérisation de la pénétration du phénol dans l’environnement** . 7

2.2.1 *Production, importation et usages* .. 7

2.2.2 *Sources et rejets* ... 8

2.2.2.1 *Sources naturelles* ... 8

2.2.2.2 *Sources anthropiques* .. 8

2.3 **Caractérisation de l’exposition** ... 9

2.3.1 *Dévenir dans l’environnement* .. 9

2.3.1.1 *Atmosphère* ... 9

2.3.1.2 *Eau* .. 10

2.3.1.3 *Sédiments* .. 10

2.3.1.4 *Sols* .. 10

2.3.1.5 *Biote* .. 11

2.3.1.6 *Distribution dans l’environnement* ... 11

2.3.2 *Concentrations dans l’environnement* .. 12

2.3.2.1 *Air ambiant* .. 12

2.3.2.2 *Air intérieur* ... 13

2.3.2.3 *Eau potable* ... 14

2.3.2.4 *Eaux de surface* .. 14

2.3.2.4.1 *Effluents des usines industrielles et municipales de traitement des eaux usées* .. 14

2.3.2.5 *Eau souterraine* ... 16

2.3.2.6 *Sédiments* .. 16

2.3.2.7 *Sols* .. 16

2.3.2.8 *Biote* .. 17

2.3.2.9 *Aliments* .. 17

2.3.2.10 *Produits de consommation* .. 17

2.3.3 *Production endogène* ... 18

2.4 **Caractérisation des effets** ... 18

2.4.1 *Ecotoxicologie* .. 18

2.4.1.1 *Organismes aquatiques* ... 18

2.4.1.2 *Organismes terrestres* .. 19
2.4.2 Effets atmosphériques abiotiques .. 20
2.4.3 Mammifères en expérience et in vitro .. 20
 2.4.3.1 Toxicité aiguë et irritation .. 20
 2.4.3.2 Toxicité à court terme et subchronique .. 21
 2.4.3.3 Toxicité chronique et cancérigénicité .. 23
 2.4.3.4 Génotoxicité ... 24
 2.4.3.5 Toxicité pour la reproduction et le développement 25
2.4.4 Humains .. 26
 2.4.4.1 Exposition et irritation aiguës .. 26
 2.4.4.2 Études épidémiologiques .. 26

2.5 Toxicocinétique et mécanisme d’action .. 27

3.0 ÉVALUATION DU CHARACTÈRE « TOXIQUE » AU SENS DE LA LCPE 29

3.1 LCPE 11a) : Environnement ... 29
 3.1.1 Paramètres de l’évaluation ... 29
 3.1.1.1 Paramètres de l’évaluation pour les rejets dans l’eau 29
 3.1.1.2 Paramètres de l’évaluation pour les rejets dans l’air 30
 3.1.2 Caractérisation du risque environnemental 30
 3.1.2.1 Organismes aquatiques .. 30
 3.1.2.1.1 Discussion ... 35
 3.1.2.1.2 Sommaire .. 36
 3.1.2.2 Organismes terrestres ... 37
 3.1.2.2.1 Mammifères ... 37
 3.1.2.2.2 Végétation terrestre .. 41

3.2 LCPE 11b) : Environnement essentiel pour la vie humaine 41

3.3 LCPE 11c) : Santé humaine ... 42
 3.3.1 Calcul de l’exposition de la population ... 42
 3.3.2 Caractérisation du danger ... 45
 3.3.3 Analyses dose/réponse ... 47
 3.3.4 Caractérisation du risque pour la santé humaine 50
 3.3.5 Incertitudes et degré de confiance liés à la caractérisation du risque pour la santé humaine ... 50

3.4 Conclusions .. 51

3.5 Considérations relatives au suivi (mesures à prendre) 52

4.0 BIBLIOGRAPHIE .. 53

ANNEXE A STRATÉGIES DE RECHERCHE UTILISÉES POUR RELEVER
LES DONNÉES PERTINENTES ... 71
LISTE DES TABLEAUX

TABLEAU 1 Propriétés physico-chimiques du phénol ..8
TABLEAU 2 Rejets industriels de phénol et de composés phénoliques totaux, en 19969
TABLEAU 3 Gamme des concentrations maximales, selon la source, au Canada15
TABLEAU 4 Évaluation très prudente : risque environnemental pour la truite arc-en-ciel31
TABLEAU 5 Évaluation prudente : risque environnemental pour la truite arc-en-ciel32
TABLEAU 6 Dose journalière estimative de phénol attribuable aux divers milieux de l'environnement de la population générale au Canada ...43
TABLEAU 7 Estimation de la pire dose journalière de phénol atmosphérique inhalée par les populations vivant à proximité des sources ponctuelles au Canada44
TABLEAU 8 Doses journalières estimatives de phénol attribuables à certains produits de consommation ..46

LISTE DES FIGURES

FIGURE 1 Formule développée du phenol ...7
FIGURE 2 Comparaison de la répartition du rapport de la concentration de phénol à la réponse pour une exposition de 27 jours des stades de l’embryon et de l’alevin de la truite arc-en-ciel et pour une exposition de 9 jours des stades de l’embryon et du têtard de la grenouille léopard ...19
FIGURE 4 Analyse probabiliste du risque : distribution du risque de toxicité chronique pour les stades de l’embryon et de l’alevin de la truite arc-en-ciel, dans le cas de deux raffineries, en 1995-1996 ...34
FIGURE 5 Analyse probabiliste du risque : distribution du risque de toxicité chronique pour les stades de l’embryon et de l’alevin de la truite arc-en-ciel, dans le cas d’usines de pâtes, de papiers et de produits du bois, en 199634

FIGURE 7 Analyse probabiliste du risque : résultats de la modélisation du risque, pour la communauté aquatique, de toxicité aiguë et chronique et comparaison avec la gamme des VEE, dans le cas de deux raffineries de pétrole, en 1995-1996 ...35

FIGURE 8 Analyse probabiliste du risque : distribution du risque de toxicité chronique au niveau d’organisation de la communauté, dans le cas de deux raffineries de pétrole, en 1995-1996 ...35
Liste des abréviations

<table>
<thead>
<tr>
<th>Abréviation</th>
<th>Signification</th>
</tr>
</thead>
<tbody>
<tr>
<td>B[a]P</td>
<td>benzo[a]pyrène</td>
</tr>
<tr>
<td>CA</td>
<td>concentration admissible</td>
</tr>
<tr>
<td>CAS</td>
<td>Chemical Abstracts Service</td>
</tr>
<tr>
<td>CE</td>
<td>concentration efficace</td>
</tr>
<tr>
<td>CFC</td>
<td>chlorofluorocarburé</td>
</tr>
<tr>
<td>CL₅₀</td>
<td>concentration létale médiane</td>
</tr>
<tr>
<td>CMENO</td>
<td>concentration minimale avec effet nocif observé</td>
</tr>
<tr>
<td>CMEO</td>
<td>concentration minimale avec effet observé</td>
</tr>
<tr>
<td>CSENO</td>
<td>concentration sans effet nocif observé</td>
</tr>
<tr>
<td>CSEO</td>
<td>concentration sans effet observé</td>
</tr>
<tr>
<td>DA</td>
<td>dose admissible</td>
</tr>
<tr>
<td>DE</td>
<td>dose efficace</td>
</tr>
<tr>
<td>DL₅₀</td>
<td>dose létale médiane</td>
</tr>
<tr>
<td>DMBA</td>
<td>diméthylbenz[a]anthracène</td>
</tr>
<tr>
<td>DR</td>
<td>dose de référence</td>
</tr>
<tr>
<td>FBC</td>
<td>facteur de bioconcentration</td>
</tr>
<tr>
<td>ISCST3</td>
<td>Industrial Source Complex Short Term Model (modèle complexe à court terme des sources industrielles)</td>
</tr>
<tr>
<td>Kₙ</td>
<td>coefficient de sorption sur le carbone organique</td>
</tr>
<tr>
<td>Kₖₑ</td>
<td>coefficient de partage entre l’octanol/eau</td>
</tr>
<tr>
<td>LCPE</td>
<td>Loi canadienne sur la protection de l’environnement</td>
</tr>
<tr>
<td>LSIP</td>
<td>liste des substances d’intérêt prioritaire</td>
</tr>
<tr>
<td>PCOP</td>
<td>potentiel de création d’ozone photochimique</td>
</tr>
<tr>
<td>PDO</td>
<td>potentiel de destruction de l’ozone</td>
</tr>
<tr>
<td>PRP</td>
<td>potentiel de réchauffement de la planète</td>
</tr>
<tr>
<td>VCT</td>
<td>valeur critique de la toxicité</td>
</tr>
<tr>
<td>VEE</td>
<td>valeur estimée de l’exposition</td>
</tr>
<tr>
<td>VESEO</td>
<td>valeur estimée sans effet observé</td>
</tr>
<tr>
<td>WCEM</td>
<td>Wildlife Contaminant Exposure Model (modèle de l’exposition de la faune aux contaminants)</td>
</tr>
</tbody>
</table>
SYNOPSIS

Le phénol est un alcool aromatique de formule brute $\text{C}_6\text{H}_6\text{O}$. Le Canada, où il ne s’en fabrique plus, en a importé 76 kt en 1995 et 95 kt en 1996. La fabrication de résines phénoliques constitue 85 % de la consommation de phénol.

Le phénol est libéré dans l’environnement canadien comme sous-produit et contaminant par divers secteurs industriels et par les usines municipales de traitement des eaux usées. Les principaux secteurs industriels en question sont les pâtes et papiers et les produits du bois, les produits minéraux (non métalliques), les produits chimiques, les produits de l’acier et des métaux ainsi que le raffinage et les produits du pétrole. En 1996, les émissions atmosphériques de phénol et de composés phénoliques totaux ont été de 321,8 t, tandis que les rejets dans l’eau ont été de 58,5 t.

L’évaluation environnementale a porté principalement sur les rejets de phénol dans l’air et dans l’eau car c’est dans ces milieux qu’aboutissent les plus gros rejets. Les effets sur l’environnement sont susceptibles de se produire près des lieux de rejet, parce que, dans l’air comme dans l’eau, le phénol possède une demi-vie brève. On s’est servi des concentrations de phénol de l’effluent final (c’est-à-dire au point de rejet dans l’environnement) de divers secteurs industriels pour estimer l’exposition du biote aquatique, faute de connaître les concentrations dans le milieu aquatique. On a étudié l’exposition des organismes terrestres attributable aux principaux émetteurs de phénol dans l’atmosphère.

Chez les organismes aquatiques, le paramètre le plus sensible de l’évaluation a été la mortalité des embryons et des alevins de la truite arc-en-ciel. On a retenu le campagnol des champs comme l’herbivore le plus susceptible d’être exposé aux rejets des sources ponctuelles proches de phénol dans l’atmosphère. On a examiné deux scénarios d’exposition : (1) l’inhalation directe; (2) l’ingestion et l’inhalation directe. L’organisme le plus sensible exposé au phénol dans le sol est la laitue.

L’évaluation des effets sur les organismes aquatiques a montré que, pour 22 usines de pâtes et papiers de l’Ontario (sur 26), 6 exutoires d’aciéries du Canada (sur 8), et 14 raffineries et usines de produits pétroliers du Canada (sur 16), la probabilité que le phénol provoque des effets dans plus de 5 % des communautés aquatiques est négligeable. Pour les autres, la probabilité de répercussions de plus de 35 % chez les premiers stades de vie des espèces les plus sensibles exposées au phénol près des exutoires était faible (< 5 %). Près des exutoires des usines municipales de traitement des eaux usées, l’exposition au phénol n’est pas susceptible d’entraîner d’effets.

Les deux scénarios de l’exposition des herbivores ont montré que le phénol rejeté dans l’atmosphère par les principaux émetteurs du Canada menace peu la faune terrestre. De même, il est peu probable que le composé cause des effets sur la végétation terrestre près de ces sources.

En raison de la réactivité du phénol dans l’atmosphère, il existe un certain potentiel de création d’ozone photochimique. Cependant, en raison des quantités disponibles pour cette réaction, la contribution de cette molécule est négligeable par rapport à celle des autres substances à l’origine du smog. La réaction avec l’ozone est négligeable; faute de posséder des atomes de chlore ou de brome, la molécule, dont la demi-vie globale est courte, ne contribue presque pas à la destruction de l’ozone stratosphérique et aux changements climatiques.
Peu de données accessibles permettent d’estimer l’exposition de la population canadienne au phénol; cependant, la nourriture semble la principale voie d’exposition de la population générale. Les doses absorbées seraient fortes à proximité des sources ponctuelles industrielles. D’après les études in vivo, le rein semble l’organe cible de la toxicité attribuable au phénol. Parmi les autres effets sensibles observés chez les animaux de laboratoire, il y a les transformations histopathologiques du foie et du thymus, la réduction du nombre de certaines cellules du sang, la suppression de la réaction immunitaire et des effets sur le système nerveux. La dose journalière moyenne estimative chez la population en général, du fait des sources du composé dans l’environnement, et les estimations prudentes de l’exposition par inhalation chez les populations vivant à proximité des sources ponctuelles industrielles sont inférieures à la dose admissible déterminée d’après les concentrations provoquant des effets non néoplasiques sur le rein. La dose admissible est celle à laquelle une personne peut être exposée quotidiennement sa vie durant, sans subir d’effet nocif.

D’après les données disponibles, on conclut que le phénol ne pénètre pas dans l’environnement en une quantité ou en une concentration ou dans des conditions de nature à avoir, immédiatement ou à long terme, un effet nocif sur l’environnement, à mettre en danger l’environnement essentiel pour la vie humaine, ou à constituer un danger au Canada pour la vie ou la santé humaine. En conséquence, le phénol n’est pas considéré comme « toxique », au sens de l’article 11 de la Loi canadienne sur la protection de l’environnement (LCPE).

L’évaluation des options, en vertu de la loi susmentionnée, permettant de réduire l’exposition à cette substance n’est pas considérée comme une priorité pour le moment. Comme, cependant, cette conclusion se fonde sur les formes actuelles d’utilisation du composé, il faudrait poursuivre la surveillance de ses rejets pour s’assurer que l’exposition n’augmente pas de façon notable.
1.0 INTRODUCTION

La Loi canadienne sur la protection de l’environnement (LCPE) exige des ministres fédéraux de l’Environnement et de la Santé qu’ils préparent et publient une liste des substances d’intérêt prioritaire, identifiant les substances chimiques, les groupes de substances chimiques, les effluents et les déchets, qui peuvent être nocifs pour l’environnement ou constituer un danger pour la santé humaine. La Loi exige également des deux ministres qu’ils évaluent ces substances et qu’ils déterminent si elles sont « toxiques » au sens de l’article 11 de la Loi :

- est toxique toute substance qui pénètre ou peut pénétrer dans l’environnement en une quantité ou une concentration ou dans des conditions de nature à :
 - avoir, immédiatement ou à long terme, un effet nocif sur l’environnement;
 - mettre en danger l’environnement essentiel pour la vie humaine;
 - constituer un danger au Canada pour la vie ou la santé humaine.

Les substances dont l’évaluation révèle la toxicité au sens de l’article 11 peuvent être inscrites dans l’annexe I de la Loi, et on peut envisager, à leur égard, d’éventuelles mesures de gestion du risque, par exemple un règlement, des lignes directrices ou des codes de pratiques, pour en régir le cycle de vie (de la recherche-développement à l’élimination finale en passant par la fabrication, l’utilisation, l’entreposage et le transport).

D’après l’analyse initiale de l’information facilement accessible, les motifs d’évaluation du phénol fournis par la Commission consultative d’experts auprès des ministres sur la deuxième liste de substances d’intérêt prioritaire (Commission consultative, 1995) étaient les suivants :

- Publications sur la protection de l’environnement
- Direction générale de l’avancement des technologies environnementales
- Environnement Canada
- Ottawa (Ontario)
- K1A 0H3

La démarche suivie pour évaluer les effets sur la santé humaine est exposée dans la publication de la Direction de l’hygiène du milieu intitulée « Loi canadienne sur la protection de l’environnement – L’évaluation du risque à la santé humaine des substances d’intérêt prioritaire ».
(Santé Canada, 1994), qu'on peut obtenir auprès du :

Centre de l'hygiène du milieu
Pièce 104
Santé Canada
Pré Tunney
Ottawa (Ontario)
K1A 0L2

Les stratégies de recherche employées pour localiser les données utiles à l’évaluation des effets potentiels sur l’environnement (antérieures à mai 1999) et sur la santé humaine (antérieures à septembre 1997) sont présentées dans l’annexe A. Au besoin, des articles de synthèse ont été consultés. Cependant, toutes les études originales formant la base de la détermination du caractère toxique ou non du phénol, au sens de la LCPE, ont été soumises à l’évaluation critique du personnel d’Environnement Canada (pénétration dans l’environnement, exposition, effets environnementaux) et de Santé Canada (exposition des humains, effets sur la santé humaine).

Environnement Canada a créé un Groupe-ressource environnemental pour aider à la rédaction, à la collecte des données sur l’exposition et à l’examen de l’évaluation environnementale du phénol. Ce groupe, constitué de scientifiques de l’administration fédérale et de l’industrie, a été créé à l’automne 1996. Ses membres étaient :

Roger Breton, Environnement Canada
Lorna Brownlee, Environnement Canada
Douglas Bryant, *CanTox Inc.*
Howard Carter, Compagnie Pétrolière Impériale
Jacques Gagnon, Ressources naturelles Canada
Patrick Georges, expert-conseil mandaté par Environnement Canada
Roger Keefe, Compagnie Pétrolière Impériale
Tanis Lugsdin, Environnement Canada
Sondra O’Block, *(Aristech Chemical Corporation)*
Lynne Patenaude, Environnement Canada
Joe Wittwer, Environnement Canada

Les parties du rapport d’évaluation et de la documentation (Environnement Canada, 1998a) utiles à l’évaluation environnementale ont été examinées par le groupe, de même que par :

Nigel Bunce, Université de Guelph
John Headley, Environnement Canada
Robert Kent, Environnement Canada
Shawn Michajluk, Environnement Canada
Dwayne Moore, *The Cadmus Group, Inc.*
Charles A. Staples, *Assessment Technologies, Inc.*
William Strachan, Environnement Canada
Les parties du rapport d’évaluation et la documentation sur la santé ont été préparées par les personnes suivantes, de Santé Canada :

W. Bruce
M.E. Meek
R. Newhook

Les sections du présent rapport d’évaluation et de la documentation complémentaire portant sur la génotoxicité ont été révisées par D. Blakey, de la Division des intoxications environnementales et professionnelles de Santé Canada. Les sections de la documentation complémentaire portant sur la santé humaine ont été révisées à l’externe par B. Duncan (Allied Signal, Inc.), R. Gingell (Shell Chemical Company), G. Granville (Shell Canada Ltée) et C. Morris (ICC U.S.A., Inc.), principalement pour évaluer le caractère exhaustif des sujets traités. La justesse de l’information, l’absence de lacunes et la solidité des conclusions sur la caractérisation des dangers et les analyses de la relation dose-réponse ont fait l’objet d’un rapport écrit du service de l’information de BIBRA Toxicology International ainsi que du comité suivant, convoqué par la Toxicology Excellence for Risk Assessment (TERA) :

M. Bogdanoff, DuPont Haskell Laboratory
M. Dourson, TERA
A. Jarabek, U.S. Environmental Protection Agency [observations écrites]
R. Keenan, Division ChemRisk de McLaren/Hart
G. Leikauf, University of Cincinnati
R. Manning, Georgia Department of Natural Resources
E. Ohanian, U.S. Environmental Protection Agency
K. Poirier, Procter et Gamble
A. Renwick, University of Southampton
L. Rosato, Millennium Petrochemical Corporation
L. Sirinek, Ohio Environmental Protection Agency

Les sections du rapport d’évaluation ayant trait à la santé ont été examinées et approuvées par l’assemblée de la Gestion des risques de la Direction générale de la protection de la santé (Santé Canada).

L’ensemble du rapport d’évaluation a été révisé et approuvé par le Comité de gestion de la LCPE d’Environnement Canada et de Santé Canada.

Une ébauche du rapport d’évaluation a été mise à la disposition du public pour une période d’examen de 60 jours (du 1er mai au 29 juin, 1999) [Environnement Canada et Santé Canada, 1999]. Après étude des commentaires reçus, on a révisé le rapport d’évaluation en conséquence. Un résumé des commentaires et de leurs réponses est disponible sur Internet à l’adresse :

www.ec.gc.ca/cceb1/fre/final/index_f.html

Le texte du rapport a été construit de façon à aborder en premier lieu les effets sur l’environnement [qui sont utiles à la détermination du caractère « toxique » de la substance au sens des alinéas 11a et b)], puis les effets sur la santé humaine [utiles à la détermination du caractère « toxique » au sens de l’alinéa 11c)].

On peut obtenir un exemplaire du présent rapport d’évaluation, sur demande, à :

L’Informatheque
Environnement Canada
Rez-de-chaussée, Place Vincent-Massey
351, boul. St-Joseph
Hull (Québec)
K1A 0H3

ou sur Internet, à l’adresse suivante :

www.ec.gc.ca/cceb1/fre/final/index_f.html
On peut obtenir la documentation complémentaire inédite qui renferme des renseignements supplémentaires en s’adressant à la :

Direction de l’évaluation des produits chimiques commerciaux
Environnement Canada
14e étage, Place Vincent-Massey
351, boul. St-Joseph
Hull (Québec)
K1A 0H3

ou au

Centre d’hygiène du milieu
Pièce 104
Santé Canada
Pré Tunney
Ottawa (Ontario)
K1A 0L2
2.1 Identité et propriétés physiques et chimiques

La formule développée du phénol (formule brute : C₆H₆O; p.m. 94,11; n° CAS : 108-95-2) est présentée dans la figure 1. Le phénol porte aussi les noms de hydroxybenzène, acide phénique, acide carbolique, (hydr)oxybenzène (Environnement Canada, 1998a).

FIGURE 1 Formule développée du phénol

Comme l’objet de la présente évaluation se borne au seul phénol, on s’est efforcé de le distinguer des composés phénoliques totaux. Ces derniers se définissent comme des mélanges d’alcools aromatiques substitués. Beaucoup de données publiées sur les concentrations et les rejets dans l’environnement ne font pas cette distinction.

La confusion peut être imputable à de nombreuses causes, l’une d’elles étant que la méthode d’analyse à l’origine de l’obtention des données n’est souvent pas précisée. Faute de données sur le phénol, on s’est plutôt servi des données relatives aux composés phénoliques totaux.

2.2 Caractérisation de la pénétration du phénol dans l’environnement

2.2.1 Production, importation et usages

Le phénol est un produit chimique industriel répandu. Au Canada, la fabrication des résines phénoliques constitue environ 85 % de sa consommation (Environnement Canada, 1997b). La plupart des résines phénoliques servent à la fabrication de panneaux, notamment à particules orientées, d’isolant et d’articles et préparations tels que peintures, lubrifiants, crèmes, adhésifs, freins, composants électriques et électrodes (SRI International, 1993). Le gros des résines phénoliques est fabriqué en Ontario (108 kt), au Québec (105 kt), en Colombie-Britannique (35 kt) et en Alberta (18 kt) [Camford Information Services, 1994; SRI International, 1994].
Le phénol trouve aussi une large gamme d'autres applications, notamment comme matière première de la fabrication d'autres substances organiques (notamment le bisphénol A, le caprolactame, l'aniline, l'acide adipique, les alkylphénols et d'autres) ainsi que d'adhésifs, d'explosifs, du coke, d'engrais, de gaz d'éclairage, de peintures et de décapants, de caoutchouc, d'articles renfermant de l'amiante, d'agents de préservation du bois, de textiles, de médicaments, de préparations pharmaceutiques, de parfums et de aérosols pour les maux de gorge ainsi que les lotions antiseptiques (Deichmann et Keplinger, 1981; Environnement Canada, 1998a). Le phénol sert aussi de désinfectant, d’anesthésiant et d’antiseptique généraux, et on le trouve dans un certain nombre de produits de consommation, notamment les onguents, les gouttes pour les oreilles et le nez, les lotions pour boutons de fièvre, les gargarismes et bains de bouche, les gouttes pour soulager les maux de dents, les liniments, les pastilles et aérosols pour les maux de gorge ainsi que les lotions antiseptiques (Gosselin et al., 1984; Reynolds, 1989; Gennaro, 1990).

2.2.2 Sources et rejets

2.2.2.1 Sources naturelles

2.2.2.2 Sources anthropiques

Le phénol est fabriqué en tant qu’intermédiaire de la préparation d’autres produits chimiques et il peut être libéré comme sous-produit ou contaminant. En 1996, les rejets signalés à Environnement Canada, à la faveur d’enquêtes sur l’industrie, pour les besoins de la présente évaluation en vertu de l’article 16 de la LCPE (tableau 2), ont totalisé 414,7 t de phénol et de composés phénoliques totaux confondus.

TABLEAU 1 Propriétés physico-chimiques du phénol

<table>
<thead>
<tr>
<th>Propriété</th>
<th>Grandeur</th>
<th>Travaux cités</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point de fusion (°C)</td>
<td>41</td>
<td>Verschueren, 1983</td>
</tr>
<tr>
<td>Point d’ébullition (°C)</td>
<td>182</td>
<td>Verschueren, 1983</td>
</tr>
<tr>
<td>Tension de vapeur (Pa)</td>
<td>47</td>
<td>Dean, 1985</td>
</tr>
<tr>
<td>Constante de la loi d’Henry (Pa·m^3/mol)</td>
<td>0,059</td>
<td>Abd-El-Bary et al., 1986</td>
</tr>
<tr>
<td>pK_a</td>
<td>9,99</td>
<td>Dean, 1985</td>
</tr>
<tr>
<td>Log K_a</td>
<td>1,15–3,49</td>
<td>DMER et AEL, 1996</td>
</tr>
<tr>
<td>Log K_w</td>
<td>1,46</td>
<td>Fujita et al., 1964</td>
</tr>
<tr>
<td>Solubilité dans l’eau (mg/L)</td>
<td>88 360</td>
<td>Blackman et al., 1955</td>
</tr>
</tbody>
</table>

1 Voir la documentation d’Environnement Canada (Environnement Canada, 1998a) pour une énumération plus complète de la gamme des valeurs citées et des critères de sélection des propriétés physico-chimiques.
D'après l'information présentée dans le tableau 2 et l'information complémentaire tirée de l'Inventaire national des rejets de polluants ainsi que du Programme d'accélération de la réduction ou de l'élimination des toxiques (Environnement Canada, 1998a), l'évaluation environnementale s'est attachée aux rejets de phénol dans l'atmosphère et dans l'eau, parce que les plus grandes quantités de ce composé sont surtout libérées dans ces milieux.

Bien que le tableau 2 n'en parle pas, les stations municipales de traitement des eaux usées libèrent aussi du phénol. En 1995, on a estimé entre 14 et 16 t les rejets de composés phénoliques totaux de quatre de ces usines de la Colombie-Britannique (GVRD, 1996). On ne possède pas de renseignements sur les rejets de phénol et de composés phénoliques totaux par ces usines dans tout le Canada. Les concentrations de phénol et de composés phénoliques totaux dans l’effluent final sont présentées à la section 2.3.2.4.

Tableau 2 Rejets industriels de phénol et de composés phénoliques totaux, en 1996

<table>
<thead>
<tr>
<th>Secteur industriel</th>
<th>Rejets (tonnes)</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Atmosphère</td>
<td>Eau</td>
<td>Autres milieux</td>
<td>Rejets totaux</td>
</tr>
<tr>
<td>Pâtes, papiers et bois</td>
<td>205,6</td>
<td>44,3</td>
<td>6,5</td>
<td>256,4</td>
</tr>
<tr>
<td>Minéraux (non métalliques)</td>
<td>62,7</td>
<td>0,0</td>
<td>1,3</td>
<td>64,0</td>
</tr>
<tr>
<td>Chimie</td>
<td>22,9</td>
<td>0,0</td>
<td>15,4</td>
<td>38,3</td>
</tr>
<tr>
<td>Acier et métaux</td>
<td>23,3</td>
<td>9,2</td>
<td>2,0</td>
<td>34,5</td>
</tr>
<tr>
<td>Raffinage du pétrole</td>
<td>1,8</td>
<td>5,0</td>
<td>6,5</td>
<td>13,3</td>
</tr>
<tr>
<td>Autres 3</td>
<td>5,5</td>
<td>0,0</td>
<td>2,7</td>
<td>8,2</td>
</tr>
<tr>
<td>Total</td>
<td>321,8</td>
<td>58,5</td>
<td>34,4</td>
<td>414,7</td>
</tr>
</tbody>
</table>

1 Enquête auprès de l’industrie canadienne effectuée en vertu de l’article 16 de la LCPE (Environnement Canada, 1997b).
2 Y compris les effluents industriels envoyés dans les stations municipales de traitement des eaux usées, en décharge, en injection en puits profonds et à l’épandage sur les terres agricoles.
3 Le secteur du textile, des équipements de transport, de la machinerie et de l’équipement industriels ainsi que des appareils et des produits connexes, confondus.

2.3 Caractérisation de l’exposition

2.3.1 Devenir dans l’environnement

Il existe plusieurs synthèses des publications scientifiques sur la vitesse de dégradation du phénol dans divers milieux (Shiu et al., 1994; Mackay et al., 1995; DMER et AEL, 1996). On s’attend à ce que la photo-oxydation dans l’air et la biodégradation dans l’eau et le sol soient les principaux facteurs de disparition du composé. Voici un court résumé du devenir du phénol dans chaque milieu.

2.3.1.1 Atmosphère

vie, le phénol ne devrait pas franchir de grandes distances dans l’atmosphère. Il est susceptible d’en être éliminé par la photo-oxydation mettant en jeu des radicaux hydroxyle et nitrate, la photolyse et le dépôt humide et sec (Atkinson et al., 1987 et 1992; Bunce, 1996; Van Dusen, 1996).

2.3.1.2 Eau

Le phénol réagit comme un acide faible dans l’eau, mais, en raison de son pKₐ élevé (9,99), on ne s’attend pas à ce qu’il se dissocie dans la gamme des pH que l’on observe ordinairement dans le milieu naturel. Le phénol peut participer à de nombreux processus qui entraîneront sa disparition, notamment la biodégradation, la photo-oxydation, la photolyse et la volatilisation.

La biodégradation est un processus majeur d’élimination du phénol présent dans les eaux de surface (Hwang et al., 1986; U.S. EPA, 1990), pourvu que la concentration ne soit pas suffisamment élevée pour inhiber significativement ce processus (ATSDR, 1989). Ananyeva et al. (1992) ont fait observer que le phénol n’est pas persistant dans l’eau et qu’il est totalement biodégradé en environ 70 h. On pense que sa demi-vie dans l’eau est de 55 h (Mackay et al., 1995; DMER et AEL, 1996). Dans les eaux de surface éclairées par le soleil, le phénol réagit généralement avec les radicaux hydroxyle et peroxyde ainsi que l’oxygène singule (Scully et Hoigné, 1987; IPCS, 1994a). On signale une demi-vie de 100 h dans l’hypothèse d’une réaction avec le radical hydroxyle, et de 19,2 h dans celle d’une réaction avec le radical peroxyde (Howard, 1989). Dans les eaux estuariennes, la photolyse est un processus mineur de transformation, particulièrement l’été, lorsque prédomine la biodégradation (Hwang et al., 1986). La demi-vie du phénol due à sa volatilisation des eaux de surface est de 3,2 mois (U.S. EPA, 1990).

La demi-vie estimative du phénol dans les eaux souterraines varie de 12 à 168 h (Howard et al., 1991). De nombreux facteurs influent sur le potentiel de contamination des eaux souterraines, notamment la profondeur, le type de sol, ainsi que l’abondance des microbes (Aelion et al., 1987; Dobbins et al., 1987; IPCS, 1994a).

2.3.1.3 Sédiments

Le coefficient de partage du phénol entre le carbone organique et l’eau est faible (log Kₒₒ = 1,15 à 3,49); il en est de même pour son coefficient de partage entre l’octanol et l’eau (log Kₒₒ = 1,46). On ne s’attend donc pas à ce qu’il soit considérablement adsorbé sur les matières en suspension ou les sédiments (U.S. EPA, 1990; DMER et AEL, 1996). DMER et AEL (1996) ainsi que Shiu et al. (1994) ont chiffré à 550 h la demi-vie du phénol dans les sédiments, par suite de sa biodégradation.

2.3.1.4 Sols

de sa concentration, ce qui dénote l’inhibition du processus par le composé même (Scott et al., 1982; Dean-Ross, 1989).

Artiola-Fortuny et Fuller (1982) ont évalué les capacités d’adsorption du phénol par cinq sols et ont constaté que les deux principales propriétés qui commandaient l’adsorption sont, dans les sols minéraux, le pourcentage d’oxydes de fer et le pH. L’adsorption du phénol est plus forte lorsque le pH (forme ionisée) et la teneur en oxydes de fer sont élevés. L’adsorption ralentit la biodégradation dans les sols, bien que la sorption sur les surfaces argileuses soit réversible (Saltzman et Yariv, 1975; Knezovich et al., 1988). Comme chez le phénol, log K_{oe} et log K_{so} sont faibles, on s’attend à une faible sorption du composé sur la matière organique. Dans les sols acides, on a signalé sa faible adsorption et sa forte mobilité (Scott et al., 1982; Howard, 1989).

En raison de la tension de vapeur modérée du phénol (47 Pa) et sa constante de la loi d’Henry de 0,059 Pa·m^{3}/mol, on s’attend à ce que sa volatilisation soit rapide à partir de la couche superficielle sèche des sols (IPCS, 1994a). Le phénol est sensible aux agents oxydants (notamment aux ions métalliques tels que les ions manganèse et fer) et il peut, par auto-oxydation, former des complexes colorés tels que les quinones (Rineheart, 1973; IPCS, 1994a).

2.3.1.5 Biote

Le logarithme des facteurs de bioconcentration (FBC) donné dans les publications scientifiques varie de 0,88 à 5,09, selon les organismes (Environnement Canada, 1998a). La valeur maximale de cette fourchette provient de dosages à l’aide du {sup 14}C, qui englobent le phénol et ses métabolites. Les résultats de ce genre d’études risquent de surestimer l’accumulation du phénol. Les chiffres le plus réalistes se situent donc dans l’intervalle de 0,88 à 2,44. D’après la valeur de log K_{oe} proposée pour la molécule (1,46) [Fujita et al., 1964], on a calculé un FBC de 7,6 (Veith et al., 1980; Lyman et al., 1990). D’après ces données, la bioaccumulation du phénol ne devrait pas être considérable (Verschueren, 1983; Budavari et al., 1989; Howard, 1989; IPCS, 1994a; DMER et AEL, 1996).

2.3.1.6 Distribution dans l’environnement

Pour avoir un aperçu des principales réactions à laquelle participe le phénol, de son cheminement d’un milieu à l’autre et de son advection (sortie d’un système) et de sa distribution générale dans l’environnement, on a construit des modèles de fugacité de la molécule (DMER et AEL, 1996). On a fait tourner un modèle en déséquilibre permanent (modèle de fugacité EQC de niveau III) à l’aide des méthodes élaborées par Mackay (1991) ainsi que par Mackay et Paterson (1991). Les valeurs des paramètres d’entrée étaient comme suit : poids moléculaire, 94,11; solubilité dans l’eau, 88 360 mg/L; tension de vapeur, 47 Pa; log K_{oe}, 1,46; constante de la loi d’Henry, 0,059 Pa·m^{3}/mol; demi-vie dans l’air, 17 h; demi-vie dans l’eau, 55 h; demi-vie dans le sol, 170 h; demi-vie dans les sédiments, 550 h. La modélisation posait par défaut un débit d’émission de 1 000 kg/h sur 100 000 km²; y compris une superficie en eau de 10 000 km² (20 m de profondeur). On a posé que la hauteur de l’atmosphère était de 1 000 m, que les sédiments et les sols renfermaient respectivement 4 et 2 % de carbone organique et qu’ils avaient une épaisseur respective de 1 et de 10 cm. Le pourcentage estimatif de distribution prévu par le modèle ne dépend pas du débit hypothétique d’émission.

Le modèle montre que la distribution du phénol diffère selon le milieu dans lequel il est libéré. Par exemple, s’il est émis dans l’atmosphère, on en retrouve la moitié dans ce milieu, le reste surtout dans le sol. S’il est libéré dans l’eau, on le retrouve presque totalement dans ce milieu (Mackay et al., 1995; DMER et AEL, 1996). On s’attendait à ces résultats, en raison de la faible valeur de la constante de la loi d’Henry et de la forte solubilité du phénol dans l’eau. L’évaluation des rejets dans l’air, par conséquent, s’est attachée aux voies d’exposition à la fois par l’atmosphère et le sol, tandis que l’évaluation des
rejets dans l’eau s’est attachée à l’exposition à l’eau seulement. En raison des courtes demi-vies de la molécule dans ces milieux, l’exposition est susceptible d’être maximale près des points de rejet (DMER et AEL, 1996). L’évaluation environnementale a donc porté sur leurs parages.

Si l’on possède des données fiables sur les rejets, on peut comparer les concentrations prédites par le modèle, pour un environnement donné au Canada, aux résultats de la surveillance de cette région. C’est ce qu’on a fait avec le modèle de fugacité CHEMCAN4 de niveau III qui, entre autres hypothèses, fixe les dimensions et les paramètres environnementaux de diverses régions contiguës du Canada. La région modélisée était le sud de l’Ontario, région canadienne où les rejets totaux sont maximaux (Environnement Canada, 1998a) et la seule sur laquelle on possède des données de la surveillance à une grande distance des sources ponctuelles (section 2.3.2). Les propriétés du produit et ses vitesses de dégradation étaient les mêmes que dans le modèle EQC tel qu’il est décrit ci-dessus. D’après les rejets estimatifs totaux dans la région, dans l’atmosphère (45,9 t/an) et dans l’eau (16,8 t/an), tirés de l’Inventaire national des rejets de polluants de 1993, le modèle prévoit une concentration approximative de phénol de $2 \times 10^{-4} \mu g/m^3$ dans l’air, de $1 \times 10^{-4} \mu g/L$ dans l’eau, de $4 \times 10^{-6} \mu g/g$ dans le sol, de $6 \times 10^{-3} \mu g/g$ chez les végétaux terrestres et de $4 \times 10^{-4} \mu g/g$ chez les animaux terrestres (DMER et AEL, 1996).

2.3.2 Concentrations dans l’environnement

2.3.2.1 Air ambiant

On possède très peu de données sur les concentrations de phénol dans l’air ambiant, mais ces données montrent que les concentrations sont faibles, sauf à proximité des sources ponctuelles. Dans une étude limitée, effectuée à Windsor en 1992, dans 10 emplacements urbains et 2 ruraux, on a décelé le phénol (sans le doser avec précision) à des concentrations instantanées approximatives qui allaient de non décelable (limite de détection d’environ 1 µg/m3) à 3,1 µg/m3 (OMEE, 1994). La concentration atmosphérique ambiante de phénol était de 0,12 µg/m3 (de non décelable [limite de détection non précisée] à 0,18 µg/m3), moyenne de sept échantillons d’un emplacement urbain et suburbain des États-Unis (Columbus, Ohio), en 1974 (Jones, 1976). Dans un compte rendu secondaire d’une surveillance exercée dans cinq emplacements urbains du comté de Santa Clara, en Californie, que l’on ne savait pas être à proximité de sources ponctuelles, on n’a pas décelé le phénol dans aucun des 22 échantillons (limite de détection : 0,25 mg/m3) [Hunt et al., 1988].

On a mesuré des concentrations atmosphériques de phénol quelque peu plus élevées à la faveur d’études à court terme très limitées, menées à proximité de sources ponctuelles du Canada et des États-Unis. Dans les échantillons d’air prélevés dans trois régions de l’Alberta, la plupart à proximité d’usines, les concentrations de phénol étaient de : 6,6 µg/m3, dans deux échantillons provenant de l’emplacement d’une usine de traitement du bois (la concentration a atteint 476 µg/m3 dans deux échantillons prélevés à proximité du train transportant le bois traité immédiatement après sa sortie de la cuve de traitement); de 4,3 µg/m3 dans un échantillon provenant de la rue principale d’une ville voisine; de 16,1 µg/m3 dans un échantillon unique prélevé près d’une fabrique d’huile de colza. Le phénol n’a pas été décelé (limite de détection non précisée) dans neuf échantillons prélevés près de deux usines de traitement du gaz (Strosher, 1982). Dans les relevés de l’air ambiant à proximité de sources ponctuelles de l’Ontario, les concentrations moyennes du phénol aux 30 minutes, sous le vent de deux usines de résines à base de phénol-formol variaient de 7,3 à 36 µg/m3 ($n = 4$; De Brou et Bell, 1987) et de 4 à 57 µg/m3 ($n = 18$; De Brou et Ng, 1989). Près d’une usine, les concentrations étaient indécelables lorsqu’elle ne fonctionnait pas (limite de détection
d’environ 1 µg/m³) [De Brou et Bell, 1987], tandis que les concentrations, dans 17 échantillons d’air ambiant, près d’une installation de traitement du bois, variaient de non décelable (limite de détection de la méthode : 0,1 à 10 µg/m³) à 9 µg/m³ (De Brou, 1990). D’après les études américaines signalées dans une source de seconde main, les concentrations de phénol étaient en moyenne de 106 µg/m³, dans 83 échantillons provenant de sept régions à proximité immédiate d’usines de fabrication du phénol ou de traitement au phénol surveillées entre 1974 et 1978 (Brodzinsky et Singh, 1983).

Vu le nombre peu élevé de données convenables de surveillance recueillies près de sources ponctuelles du Canada, on s’est servi de modèles de la dispersion dans l’atmosphère pour estimer les concentrations de phénol dans l’air ambiant à proximité des installations émettant le plus de phénol. On a obtenu les valeurs des paramètres d’entrée directement des sociétés industrielles et en réponse aux avis publiés en vertu de l’article 16 de la LCPE. En raison du caractère confidentiel d’une partie des données relatives à la pénétration dans l’environnement et à l’exposition que l’on a utilisées dans l’évaluation, les sources industrielles sont désignées ci-après par les expressions « Compagnie 1 » dans le cas du premier émetteur de phénol dans l’atmosphère, « Compagnie 2 » pour le deuxième, etc.

Le modèle SCREEN3 (U.S. EPA, 1995) a servi à calculer les concentrations maximales au niveau du sol sur une heure dans les endroits les plus rapprochés des trois premiers émetteurs de phénol. Environnement Canada les a estimées à : 228 µg de phénol/m², à 100 m de la cheminée de la Compagnie 1; 0,066 µg/m², à 1 200 m de la cheminée de la Compagnie 2; 0,065 µg de composés phénoliques totaux/m², à 618 m de la cheminée de la Compagnie 3. Comme la concentration prédite dans les parages de la Compagnie 1 est beaucoup plus forte (de quatre ordres de grandeur) que la concentration correspondant aux Compagnies 2 et 3, le reste des travaux de modélisation s’est concentré sur la Compagnie 1.

On s’est servi du modèle ISCST3 pour estimer de façon plus réaliste les concentrations atmosphériques dans divers emplacements près de la Compagnie 1 (Davis, 1997). Le modèle a été appliqué sur une période ininterrompue de 5,5 ans, par pas d’une heure, en utilisant les données météorologiques de la station la plus proche et des renseignements propres à la source (c’est-à-dire les paramètres de la cheminée et du bâtiment, ceux des émissions). La concentration moyenne maximale prédite de phénol sur 24 heures était, sur place, de 145 µg/m³, à 112 m au sud-ouest de la cheminée, sur le toit du bâtiment. Cependant, les concentrations entre 135 et 145 µg/m³ n’ont été atteintes, en cet endroit que 0,1 % du temps au cours de ces 5,5 années, et la concentration moyenne maximale était de 12 µg/m³. Les concentrations prédites diminuaient considérablement en fonction de la distance de la cheminée, d’une moyenne maximale sur 24 heures de 22 µg/m³, dans le champ le plus rapproché à l’extérieur des limites de l’usine à 0,75 km de la cheminée, à environ 0,5 µg/m³, à 8 km de la cheminée. La concentration médiane dans le champ le plus rapproché était de 0,007 µg/m³. Les distributions de fréquence étaient asymétriques à droite (c’est-à-dire que la majorité des échantillons renfermaient de faibles concentrations).

2.3.2.2 Air intérieur

On possède peu de données sur les concentrations de phénol dans l’air intérieur, et aucune étude pertinente n’a été effectuée au Canada. Dans les échantillons d’air évacué, prélevés pendant deux cours dans un auditorium d’un collège de l’Iowa (États-Unis), les concentrations moyennes de phénol étaient de 18 et de 16 µg/m³, contre 4 µg/m³ lorsque l’auditorium était vide (Wang, 1975). On a décelé le phénol dans des échantillons d’air intérieur prélevés en 1992-1993 dans un immeuble à bureaux de Silver Spring (Maryland, États-Unis), où les employés s’étaient plaints de malaises, et le...
phénol était un constituant de la pâte époxydique de nivellement des parquets (Martin et al., 1994). Les concentrations moyennes de phénol dans les échantillons d’air variaient de 12 à 78 µg/m³, 1 060 µg/m³ ayant été décelés dans un échantillon provenant d’un secteur où on enlevait de la colle à tapis du substrat de nivellement.

Dans une étude effectuée à Zagreb (Croatie), on a dosé le phénol par colorimétrie, sur plusieurs jours, à l’intérieur et à l’extérieur de 6 immeubles à bureaux et dans 10 maternelles et 8 écoles (Kalinic et al., 1987). La concentration moyenne de phénol à l’extérieur des immeubles à bureaux était de 51 µg/m³, contre 7 à l’intérieur. Dans les immeubles aérés, la corrélation entre les concentrations de phénol dans l’air intérieur et dans l’air extérieur était plus forte que dans les immeubles climatisés, ce qui porte à croire à une origine extérieure, pour une partie considérable de la contamination de l’air intérieur. Dans l’un des immeubles à bureaux, les concentrations supérieures de phénol (moyenne : 18 µg/m³) peuvent avoir été dues à de récents travaux de construction (l’industrie de la construction utilise des résines de phénol-formol). Dans les maternelles, la concentration moyenne de phénol était de 18 µg/m³, l’été, et de 6 µg/m³, l’hiver, alors que dans les écoles, les moyennes étaient de 4 et de 7 µg/m³ respectivement, l’été et l’hiver.

2.3.2.3 Eau potable

Le phénol a rarement été décelé dans les sources d’approvisionnement en eau potable au Canada. Dans le relevé de water national le plus récent, on ne l’a pas décelé (limite de dosage : 0,004 µg/L) dans 120 échantillons d’eau traitée prélevés entre octobre 1984 et juillet 1985, dans 40 installations de traitement de l’eau potable de partout au Canada (Sithole et Williams, 1986).

Le phénol n’a été décelé que de temps en temps, à de faibles concentrations, dans les enquêtes régionales effectuées au Canada. On a décelé des traces (limite de détection : 1,0 µg/L) dans 67 des 2 022 échantillons d’eau traitée prélevés en des emplacements répartis dans tout l’Alberta, entre 1987 et 1994 (Alberta Environmental Protection, 1996). Les concentrations de phénol dans l’eau du robinet et dans l’eau ayant subi un traitement tertiaire dans des installations disséminées dans tout le Québec ayant fait l’objet d’une enquête entre 1985 et 1994 (111 échantillons en tout) variaient de moins de 0,025 à 1,1 µg/L, la plupart étant de moins de 0,4 µg/L (Riopel, 1994). On n’a pas décelé de phénol dans trois échantillons d’eau du robinet de Toronto, en 1988 (limite de détection : 0,000 04 µg/L) ou dans sept grandes marques d’eau de source embouteillée, livrée dans les foyers de Toronto (limite de détection : 0,001 µg/L) [Kendall, 1990].

2.3.2.4 Eaux de surface

Dans les eaux de surface d’un bout à l’autre du Canada, les concentrations naturelles de phénol et de composés phénoliques totaux sont généralement inférieures à 0,002 mg/L (CCREM, 1987). Entre 1975 et 1995, les concentrations de composés phénoliques totaux dans plusieurs milliers d’échantillons d’eaux de surface prélevés dans des emplacements éloignés de sources ponctuelles étaient généralement inférieures à 0,001 mg/L (OMOE, 1991a, b, c et d; B.C. MOE, 1996; Environnement Canada, 1998a). Parce qu’on ne disposait d’aucune donnée récente sur les concentrations ambiantes de phénol dans l’eau, on s’est servi des concentrations de l’effluent final (c.-à-d. au point de rejet) comme mesure de l’exposition dans les eaux de surface à proximité des sources ponctuelles. Le présent paragraphe porte donc sur les concentrations dans les effluents finals.

2.3.2.4.1 Effluents des usines industrielles et municipales de traitement des eaux usées

Dernièrement, on a recueilli des renseignements sur les concentrations de phénol dans l’effluent final des établissements des secteurs industriels rejetant le plus de ce composé et de composés phénoliques totaux dans les eaux de surface du Canada — c’est-à-dire des pâtes, papiers et
produits du bois, de l’acier et des métaux, du raffinage du pétrole et des produits pétroliers. Les concentrations moyennes mensuelles maximales dans l’effluent final des installations de chaque secteur sont présentées dans le tableau 3, lequel comprend aussi une gamme de concentrations (échantillons prélevés au hasard et échantillons composites sur 24 heures) de 33 stations municipales de traitement des eaux usées au Canada.

On connaît les concentrations de composés phénoliques totaux dans l’effluent final des 16 raffineries de pétrole du Canada (tableau 3)

TABLEAU 3 Gamme des concentrations maximales, selon la source, au Canada

<table>
<thead>
<tr>
<th>Source ou secteur</th>
<th>Gamme des concentrations moyennes maximales(^1) d’une usine à l’autre (mg/L)</th>
<th>Substance(s)</th>
<th>Année(s) et nombre d’établissements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pâtes, papiers et produits du bois</td>
<td>n.d.(^1)–0,40</td>
<td>Phénol</td>
<td>1996, 26 usines de l’Ontario</td>
</tr>
<tr>
<td>Acier et produits métalliques</td>
<td>0,006–0,34</td>
<td>Composés phénoliques totaux</td>
<td>1995-1997, 8 exutoires (4 usines) du Canada</td>
</tr>
<tr>
<td>Raffinage et produits pétroliers</td>
<td>0,0004–2,03(^3)</td>
<td>Composés phénoliques totaux</td>
<td>1993-1996, 16 raffineries du Canada</td>
</tr>
<tr>
<td>Stations municipales de traitement des eaux usées</td>
<td>0,002–2,60(^4)</td>
<td>Composés phénoliques totaux</td>
<td>1985-1997, 31 stations du Canada</td>
</tr>
</tbody>
</table>

\(^1\) Par exemple, si un secteur industriel possède cinq usines au Canada et que l’on connaisse 12 concentrations moyennes mensuelles par usine, alors la concentration maximale est choisie pour chacune des usines; la gamme des concentrations représente donc cinq valeurs.

\(^3\) n.d. = non décelé (limite de détection : 0,002 4 mg/L).

\(^4\) Le pourcentage de phénol dans les composés phénoliques totaux est estimé à 11 % (OMOE, 1992a).

\(^2\) Données également fournies par chaque aciérie en 1997.
Au cours d’une étude de 12 mois menée en 1989-1990, la concentration moyenne de phénol dans les effluents finals mesurée dans sept raffineries de l’Ontario était de 0,001 2 mg/L. La concentration moyenne des composés phénoliques totaux dans les effluents des mêmes raffineries était de 0,011 3 mg/L. À la lumière de ces moyennes, le pourcentage de phénol dans les composés phénoliques totaux de l’effluent des raffineries est d’environ 11 % (OMOE, 1992a).

On connaît les concentrations de composés phénoliques totaux dans l’effluent final de 31 stations municipales de traitement des eaux usées de l’Ontario, de la Colombie-Britannique et de l’Alberta (OMOE, 1988; B.C. MOE, 1996; GVRD, 1996). Les concentrations totales signalées pour ces usines variaient de 0,002 à 2,6 mg/L (Environnement Canada, 1998a). En 1987, la concentration dosée maximale de phénol dans l’effluent final de sept de ces usines de l’Ontario variait de 0,004 1 à 0,017 3 mg/L. Dans cinq de ces sept usines, on connaît les concentrations respectives du phénol et de composés phénoliques totaux. D’après les concentrations moyennes, le taux de phénol dans les composés phénoliques totaux des effluents finals des cinq usines est de 1 % (OMOE, 1988). En 1997, on a prélevé neuf échantillons composites sur 24 heures et échantillons au hasard dans les effluents finals de deux stations municipales de traitement des eaux usées de l’Ontario. On n’y a pas décelé de phénol (limite de détection : 0,001 7 mg/L) [Environnement Canada, 1998b].

2.3.2.5 Eau souterraine

Dans 11 échantillons d’eau souterraine prélevés dans deux sablières et gravières abandonnées près de Ville-Mercier, au Québec, où on avait éliminé 40 000 m³ de déchets liquides, y compris des composés phénoliques, entre 1968 et 1972, les concentrations de phénol variaient de non décelable (limite de détection non précisée) à 72,6 µg/L (Pakdel et al., 1992).

2.3.2.6 Sédiments

Laliberté (1990) signale des concentrations de phénol variant de moins de 0,000 1 (limite de détection) à 0,033 mg/kg de poids sec dans les sédiments de divers cours d’eau du Québec. On a aussi décelé le phénol dans les sédiments du bassin de la rivière des Outaouais, à des concentrations atteignant 0,2 mg/kg de poids sec (Paul et Laliberté, 1987). En Colombie-Britannique, les concentrations de phénol dans les sédiments de l’estuaire du Fraser variaient de 0,007 à 0,056 mg/kg de poids sec (Hall et al., 1986). Les concentrations de phénol dans les sédiments marins, près des plates-formes de forage d’exploration aménagées sur des îles artificielles, dans la mer de Beaufort, variaient de 0,07 à 0,27 mg/kg de poids sec (Fowler et Hope, 1984).

2.3.2.7 Sols

On possède peu de renseignements sur les concentrations de phénol dans les sols canadiens. On n’a rien décelé (limite de détection : 0,1 mg/kg) dans 30 échantillons prélevés en 1987, à Port Credit, à Oakville et à Burlington (Ontario), dans des quartiers résidentiels et dans des forêts-parcs (Golder Associates, 1987). Dans 60 échantillons de sols prélevés dans des zones classées comme vieilles forêts-parcs urbaines (de plus de 40 ans) de l’Ontario, le 98e percentile des concentrations était de 0,027 mg/kg (OMOE, 1992b).

La concentration de phénol dans 16 échantillons représentatifs de sols agricoles typiques de huit provinces variait de non décelable, dans un échantillon (limite de détection de la méthode : 0,02 mg/kg de poids sec), à 0,92 mg/kg de poids sec. Dans les sols du sud de l’Ontario, soumis à une culture intensive, exposés à répétition, pendant de nombreuses années, à de fortes quantités de pesticides, les concentrations de phénol variaient de non décelable (dans trois

Données également obtenues par Environnement Canada à la fave de questionnaires envoyés, en 1997, aux municipalités d’une population supérieure à 5 000; données supplémentaires fournies par une municipalité régionale de l’Ontario, en 1998.
des six échantillons) à 1,10 mg/kg de poids sec (Webber, 1994; Webber et Wang, 1995).

Faute de données relatives à des emplacements près de sources industrielles ponctuelles, le modèle ISCST3 a également servi à prédire à quel endroit on trouverait le dépôt total maximal de phénol, près de l’usine de la Compagnie 1 (premier émetteur dans l’atmosphère au Canada) sur 5,5 années (Davis, 1997). On a aussi estimé les dépôts en d’autres endroits, y compris le champ le plus rapproché des limites du terrain de l’usine. Les dépôts prévus de phénol diminuent rapidement en fonction de la distance de la cheminée. La répartition de tous les emplacements est asymétrique à droite, c’est-à-dire que l’on a prévu peu de cas où les concentrations seraient fortes. L’estimation des dépôts au sol a servi à mettre sur pied un programme d’échantillonnage des sols pour Environnement Canada. Dans les échantillons de sols de surface (5 cm de profondeur), on a décelé du phénol en deux endroits, sur place, à des concentrations de 1,7 et 1,1 mg/kg de poids sec, et on n’en a pas décelé dans 13 autres endroits, tant sur place qu’à l’extérieur (limite de détection de 0,1 mg/kg de poids sec) [Géologos Inc., 1997].

De 1968 à 1972, environ 40 000 m³ de déchets liquides, parmi lesquels des composés phénoliques, ont été déversés dans deux gravières et sablières abandonnées près de Ville-Mercier (Québec) [Pakdel et al., 1992]. On a décelé du phénol à des concentrations de 0,001 à 0,009 mg/kg dans les échantillons de sols de 11 emplacements; cependant, dans un emplacement extrêmement contaminé, on a relevé une concentration qui atteignait 12,4 mg/kg.

2.3.2.8 Biote

Au Canada, les concentrations de phénol chez les organismes aquatiques n’ont été signalées que pour quelques espèces. Les concentrations, dans l’organisme entier, variaient de 0,004 à 0,32 mg/kg de poids humide chez le flét (Platichthys stellatus) de l’estuaire du Fraser (Hall et al., 1986). De même, les concentrations moyennes de phénol dans tout l’organisme de la carpe commune (Cyprinus carpio) et de la barbue de rivière (Ictalurus punctatus) de la rivière Grand, en Ontario, étaient de 0,16 et de 0,06 mg/kg de poids humide, respectivement (Camanzo et al., 1987).

Pour les organismes terrestres, on ne possède pas de données empiriques. Cependant, en se servant des estimations du dépôt maximal (44,5 mg/m²) et médian (3,05 mg/m²) données par le modèle ISCST3 et des estimations de la biomasse par unité de superficie, on a estimé les concentrations stationnaires de phénol dans la végétation du champ près de la Compagnie 1 à 148 et à 1,3 mg/kg de poids humide, respectivement (section 3.1.2.2).

2.3.2.9 Aliments

Dans deux études canadiennes, on a prélevé dans des points de vente au détail de Calgary (Alberta), au printemps 1991, et de Windsor (Ontario), en janvier 1992, des échantillons de 33 groupes d’aliments (chacun étant un échantillon composite de divers aliments réunis en proportion approximative de leur consommation, selon l’étude de Nutrition Canada) [ETL, 1991 et 1992]. On n’a pas décelé de phénol dans la majorité des échantillons composés des deux études. Dans la dernière, celle de Windsor, on en a décelé moins de 1 µg/g dans les viandes d’abats, le porc salaisonné, les saucisses de Francfort en conserves, le fromage et le beurre ainsi que dans les boissons alcooliques, tandis qu’on en a décelé moins de 0,1 µg/g dans les graisses et les huiles, le sucre et des produits du jambon ainsi que dans les boissons non alcooliques (les concentrations exactes sont signalées dans la note du tableau 6).

2.3.2.10 Produits de consommation

Le phénol est un désinfectant efficace contre les bactéries Gram négatif et Gram positif ainsi que contre certains champignons et virus (Reynolds, 1989). On l’a utilisé en solutions diluées pour la désinfection locale ainsi qu’en solution à 5 % pour désinfecter les excreta. D’autres désinfectants
renferment de 20 à 50 % de composés phénoliques, et les fongicides renferment de 2 à 4,5 % de phénol (Gosselin et al., 1984). Le phénol est également présent dans les préparations antibactériennes à usage local ou oral. Dans les préparations liquides, il titre environ 2 %, tandis que dans chaque pastille et comprimé on en trouve 33 mg (Gosselin et al., 1984). Le phénol est également présent dans les préparations antibactériennes à usage local ou oral. Dans les préparations liquides, il titre environ 2 %, tandis que dans chaque pastille et comprimé on en trouve 33 mg (Gosselin et al., 1984). Le phénol est souvent utilisé contre les démangeaisons (qu’il soulage) et il est utilisé sous la forme de lotion de calamine phénolique (à 1 %), d’onguent phénolique (à 2 %) ou, simplement, de solution aqueuse (à 0,5 à 1 %) [Gennaro, 1990]. Le phénol est un ingrédient actif d’un certain nombre de médicaments en vente libre au Canada, notamment les baumes pour les lèvres, les onguents et les aérosols ou les pastilles pour la gorge (Kealey, 1997).

Le phénol est aussi présent dans la fumée de tabac. La fumée principale en renferme de 9 à 161 µg par cigarette et de 35 à 110 µg par cigare, tandis que l’on en a dosé de 100 à 420 µg par cigarette, dans la fumée secondaire (ATSDR, 1989).

2.3.3 Production endogène

Les humains ne sont pas seulement exposés au phénol exogène, dans l’environnement, mais aussi à celui que les bactéries de l’appareil digestif produisent dans le métabolisme de la tyrosine. Cette exposition est proportionnelle à la quantité de protéine consommée. Le débit moyen d’excrétion du phénol chez les sujets en bonne santé varie de 1 à 9,8 mg/j (Bone et al., 1976; Lawrie et Renwick, 1987; Renwick et al., 1988), on a même signalé dans une autre étude une concentration de phénol de 39 mg/j (Renwick et al., 1988).

2.4 Caractérisation des effets

2.4.1 Écotoxicologie

2.4.1.1 Organismes aquatiques

La toxicité aiguë du phénol pour les organismes dulçaquicoles a été très étudiée. Les poissons se sont révélés sensibles à des concentrations de 5,02 mg/L (CL50 après 96 h), dans le cas de la truite arc-en-ciel, (Oncorhynchus mykiss) à 85 mg/L (CL50 après 2,5 h), dans le cas du carassin doré (Carassius auratus) [McLeay, 1976; Kishino et Kobayashi, 1995]. La toxicité à l’égard des invertébrés d’eau douce varie de 2 mg/L (CL50 après 48 h), chez trois trichoptères et un éphéméroptère, à 2 000 mg/L (CL50 après 48 h), chez l’éristale (Eristalis sp.) [Kamshilov et Flerov, 1978].

Les algues d’eau douce sont moins sensibles que le poisson et les invertébrés à l’exposition aiguë au phénol. Les concentrations efficaces (CE) de phénol varient de 7,5 mg/L (elles inhibent alors la multiplication cellulaire), chez Scenedesmus quadricauda, à 1 211 mg/L (CE90 après 24 h : elles inhibent alors l’assimilation) chez Scenedesmus subspicatus (Bringmann et Kühn, 1980; Tisler et Zagorc-Koncan, 1995). Les CE chez les plantes macroscopiques aquatiques et les plantes vasculaires, signalées dans les publications scientifiques, varient de 3 mg/L (après 12 à 14 j, croissance anormale) chez Lemma perpusilla à 1 500 mg/L (CE50 après 48 h, chlorose) chez Lemma minor (Blackman et al., 1955; Rowe et al., 1982).

D’après le peu de renseignements que l’on possède sur la toxicité aiguë du phénol pour les organismes marins, la sensibilité du poisson et celle des invertébrés sont semblables (Environnement Canada, 1998a). Par exemple, après une exposition de courte durée, les CE chez les poissons marins varient de 5,6 mg/L (CL50 après 96 h) à 30,6 mg/L (CL50 après 96 h) [Kondaiah et Murty, 1994]. Chez les invertébrés marins, les effets aigus négatifs surviennent à des concentrations variant de 32 mg/L (CL50 après 96 h) à 172 mg/L (CL50 après 24 h) [Key, 1981; Smith et al., 1994]. Les CE à l’égard des algues marines varient de 7,8 mg/L (CMEO après 11 j) à 49,8 mg/L (CE90 après 5 j) [Thursby et al., 1985; Cowgill et al., 1989].

Plusieurs études signalent la toxicité chronique du phénol pour les organismes dulçaquicoles. Les embryons et larves de plusieurs
espèces sont particulièrement sensibles. Chez les amphibiens, les CL50 après 5 à 9 j variaient de 0,04 à 11,23 mg/L, en milieu continuellement renouvelé (Birge et al., 1980). Chez le poisson, les CL50 après 6,5 à 58 j variaient de 0,07 à 2,67 mg/L, dans les mêmes conditions (Birge et al., 1979; DeGraeve et al., 1980; Millemann et al., 1984). Deneer et al. (1988) signalent un effet négatif pour la croissance (CE10) de Daphnia magna exposé à 0,46 mg, à peine, de phénol par litre pendant 16 j. On a signalé une CSEO après 16 j de 0,16 mg/L.

Les deux variables d’effets les plus sensibles sont les stades de l’embryon et du têtard de la grenouille léopard (Rana pipiens) et ceux de l’embryon et de l’alevin de la truite arc-en-ciel exposés au phénol jusqu’à 4 jours après l’éclosion des œufs. Chez la truite arc-en-ciel, les essais se sont déroulés dans une eau dure (200 mg de CaCO3/L) et dans une eau douce (50 mg). En raison de la controverse soulevée dans les publications scientifiques sur la dureté de l’eau et son effet sur la toxicité du phénol, seuls les résultats toxicologiques auxquels la truite arc-en-ciel s’est montrée le plus sensible sont présentés. Dans ce cas, la truite était plus sensible en eau dure. La CL50 après 9 j pour la grenouille léopard était de 0,04 mg/L et la CL50 après 27 j pour la truite arc-en-ciel était de 0,07 mg/L (Birge et al., 1979 et 1980). Les données présentées par Birge et al. (1979 et 1980), sur les deux espèces, ont été analysées à l’aide du programme PROC NLIN en SAS, à l’aide de l’analyse log-probit et log-logistique4. Les résultats de cette analyse sont présentés dans la figure 2. Les deux modèles présentés dans la figure sont bien ajustés (p > 0,05). La CL25 après 9 j pour la grenouille léopard s’est révélé être de 0,012 8 mg/L, tandis que la CL50 après 27 j pour la truite arc-en-ciel était de 0,01 mg/L.

FIGURE 2 Comparaison de la répartition du rapport de la concentration de phénol à la réponse pour une exposition de 27 jours des stades de l’embryon et de l’alevin de la truite arc-en-ciel et pour une exposition de 9 jours des stades de l’embryon et du têtard de la grenouille léopard

2.4.1.2 Organismes terrestres

Plusieurs chercheurs ont signalé les effets du phénol sur des organismes terrestres. On a observé l’accroissement du taux de mortalité chez les lombrics exposés à des concentrations de 188 à 6 900 mg/kg (Neuhauser et al., 1986; Neuhauser et Callahan, 1990; Environnement Canada, 1995). Le lombric le plus sensible est Eudrilus eugeniae, la CL50 après 14 j étant de 188 mg/kg de poids sec, dans un sol artificiel (Neuhauser et al., 1986). Environnement Canada (1995) signale une CL25 après 14 j de 210 mg/kg de poids sec, dans un sol artificiel, chez Eisenia fetida. Les essais en sol artificiel effectués sur des végétaux terrestres ont abouti à la mise en évidence de concentrations correspondant à des effets chroniques de 79 à 170 mg/kg de poids sec (Environnement Canada, 1995). Parmi les espèces de végétaux examinés, la plus sensible était la laitue (Lactuca sativa), avec une CE23 après 5 j de 79 mg/kg de poids sec, (inhibition de la levée des semis) [Environnement Canada, 1995]. Le phénol inhibe considérablement

la nitrification, plus particulièrement aux concentrations supérieures à 500 mg/kg (Beccari et al., 1980; Den Blanken, 1993).

Une seule étude portait sur les effets du phénol sur la faune. La DL$_{50}$ après 18 h pour le carouge à épaulettes (Agelaius phoeniceus) serait supérieure à 113 mg/kg (Schafer et al., 1983).

2.4.2 Effets atmosphériques abiotiques

On a calculé la pire éventualité pour déterminer si le phénol était capable de contribuer à la destruction de l’ozone stratosphérique, à la formation de l’ozone troposphérique ou aux changements climatiques (Bunce, 1996).

Comme le phénol n’est pas un composé halogéné, son potentiel de destruction de l’ozone (PDO) est nul.

Le potentiel de création d’ozone photochimique (PCOP) a été évalué à 98 (celui d’une masse égale du composé de référence éthène est de 100), à l’aide de la formule suivante :

$$\text{PCOP} = \left(\frac{k_{\text{phénol}}}{k_{\text{éthène}}} \right) \times \left(\frac{M_{\text{éthène}}}{M_{\text{phénol}}} \right) \times 100$$

où :
- $k_{\text{phénol}}$ est la constante de vitesse de la réaction du phénol avec les radicaux OH ($2,8 \times 10^{-11} \text{ cm}^3\cdot\text{molécule}^{-1}\cdot\text{seconde}^{-1}$);
- $k_{\text{éthène}}$, la constante de vitesse de la réaction de l’éthène avec les radicaux OH ($8,5 \times 10^{-12} \text{ cm}^3\cdot\text{molécule}^{-1}\cdot\text{seconde}^{-1}$);
- $M_{\text{éthène}}$, le poids moléculaire de l’éthène (28,1 g/mole);
- $M_{\text{phénol}}$, le poids moléculaire du phénol (94,1 g/mole).

Le potentiel de réchauffement de la planète (PRP) du phénol est de $3,4 \times 10^{-5}$ (celui du composé de référence CFC-11 est de 1), d’après la formule suivante :

$$\text{PRP} = \left(\frac{t_{\text{phénol}}}{t_{\text{CFC-11}}} \right) \times \left(\frac{M_{\text{CFC-11}}}{M_{\text{phénol}}} \right) \times \left(\frac{S_{\text{phénol}}}{S_{\text{CFC-11}}} \right)$$

où :
- $t_{\text{phénol}}$ est la durée de vie du phénol (0,001 4 an);
- $t_{\text{CFC-11}}$, la durée de vie du CFC-11 (60 ans);
- $M_{\text{CFC-11}}$, le poids moléculaire du CFC-11 (137,5 g/mole);
- $M_{\text{phénol}}$, le poids moléculaire du phénol (94,1 g/mole);
- $S_{\text{phénol}}$, l’intensité de l’absorption du phénol dans l’infrarouge (2 389/cm$^2\cdot$atm$^{-1}$ par défaut);
- $S_{\text{CFC-11}}$, l’intensité de l’absorption du CFC-11 dans l’infrarouge (2 389/cm$^2\cdot$atm$^{-1}$).

Les résultats montrent que, en raison de sa réactivité dans l’atmosphère, le phénol possède un PCOP de 98 (le potentiel d’une masse égale d’éthène est de 100); cependant, les quantités disponibles pour cette réaction font que la contribution du phénol est négligeable par rapport à celle des autres substances à l’origine du smog. Comme le phénol possède une durée de vie très courte dans l’atmosphère, on a estimé que son PRP était négligeable ($3,4 \times 10^{-5}$) (Bunce, 1996). En raison de la courte demi-vie du phénol dans l’atmosphère, 17 h sous l’effet de la photooxydation (Shiu et al., 1994; DMER et AEL, 1996), et de l’absence d’atomes de chlore et de brome dans la molécule, on a estimé que son PDO était nul (Bunce, 1996).

2.4.3 Mammifères en expérience et in vitro

2.4.3.1 Toxicité aiguë et irritation

Le phénol manifeste une toxicité aiguë modérée chez les animaux de laboratoire, sa DL$_{50}$ par voie orale chez le rat et le lapin se situant dans un intervalle très étroit, de 0,34 à 0,65 g/kg de m.c. (Deichmann et Witherup, 1944; Liao et Oehme, 1981; Berman et al., 1995; Moser et al., 1995). En raison de son absorption rapide au travers de la peau, sa DL$_{50}$ par voie dermique est semblable à la DL$_{50}$ par voie orale, se situant dans la fourchette de 0,5 à 0,68 mL/kg de m.c. (Conning et Hayes, 1970;
Brown et al., 1975). Les effets observés chez le rat, après une exposition aiguë par voie orale ou dermique comprenaient notamment des effets sur le système nerveux et des lésions au foie, au rein, à la rate et au thymus. Les CL50 après exposition par inhalation étaient de 316 et de 177 mg/m³ chez les rats et les souris, respectivement (Nagornyi, 1976).

Après l’exposition par voie dermique ou oculaire au phénol, on a observé une irritation locale chez le lapin, le rat, la souris et le porc, à des concentrations d’à peine 1 %, selon le véhicule utilisé. Les effets irritants pour la peau se manifestent par de graves lésions, l’œdème, l’érythème et la nécrose (Deichmann, 1949; Deichmann et al., 1950 et 1952; Conning et Hayes, 1970; Flickinger, 1976; Pullin et al., 1978; Patrick et al., 1985).

D’après les études disponibles qui portaient sur des cobayes et des souris (Itoh, 1982; Descotes, 1988; Dunn et al., 1990), le phénol n’a pas provoqué de sensibilisation.

2.4.3.2 Toxicité à court terme et subchronique

On a étudié, il y a peu de temps, la toxicité à court terme du phénol inhalé pour des rats Fischer 344 exposés à sa vapeur, par le nez uniquement, 6 heures par jour, 5 jours par semaine, pendant 2 semaines, suivies de 14 jours de rétablissement (CMA, 1998). On n’a observé aucun effet sur la masse corporelle des sujets, leur consommation de nourriture, la pathologie clinique, le poids des organes, la pathologie ou l’histopathologie macroscopiques de plusieurs tissus à la dose maximale, qui était de 98 mg/m³ (CSENO); on n’a signalé aucune CMENO (CMA, 1998)

Les autres données retrouvées sur la toxicité du phénol après exposition répétée par inhalation sont extrêmement limitées, se bornant à un petit nombre d’études, la plupart mal étayées, dans lesquelles une seule dose a été administrée.

L’exposition à court terme subchronique à 100 à 200 mg/m³ a agi sur le système nerveux et causé des lésions au cœur, aux poumons, au foie et aux reins du cobaye et du lapin, mais non du rat, selon une étude (Deichmann et al., 1944) et elle a causé des lésions au foie et des insuffisances neurologiques transitoires chez le rat, selon une autre étude (Dalin et Kristoffersson, 1974).

La base de données accessible sur la toxicité après administration de doses répétées par voie orale se borne à plusieurs études dans des conditions subchroniques ou à des études spécialisées plus récentes, à court terme, des effets neurologiques et immunologiques.

Chez de petits groupes (n = 8) de rates Fischer 344 exposées journellement à des doses de phénol de 0, 4, 12, 40 ou 120 mg/kg de m.c., administré par gavage dans un véhicule aqueux, pendant 14 j, on n’a observé aucun effet histologique ou neurocomportemental à la dose de 12 mg/kg de m.c., sauf chez un sujet (nécrose du thymus). Cependant, à 40 mg, on a observé des transformations pathologiques du rein (deux sujets avec dégénérescence des tubules dans la région papillaire et un avec des cylindres protéiniques dans les tubules) de même que la nécrose du thymus chez deux sujets sur huit, la nécrose hépatique chez un sujet et, chez un sujet, la dégénérescence vacuolaire (que l’on présume être hépatique). On n’a observé aucune transformation pathologique chez les rats témoins (Berman et al., 1995). Le système nerveux a également été touché, dans cette étude, comme le montrent : l’inhibition considérable de la réponse des pupilles à quatre jours, à la dose maximale; l’altération du domaine d’activité à 9 et/ou 15 j, aux deux doses maximales; la diminution non significative de l’activité motrice et comportement accru de cabrage au jour 15, chez les rats exposés journellement à 40 mg/kg de m.c. (tous les sujets du groupe de 120 mg étaient morts à 11 j) [Moser et al., 1995]. On considère que la CSENO et la

Cette étude n’avait pas fait l’objet d’un compte rendu complet au moment de la réalisation de l’évaluation du risque pour la santé. On ne l’a donc pas prise en considération dans l’évaluation du danger et dans les analyses du rapport entre la dose et la réponse pour les effets sur la santé humaine.
CMEO sont journellement de 12 et de 40 mg/kg de m.c., respectivement.

On a observé au cours d’une étude de groupes de cinq souris mâles CD-1 exposés en permanence à des doses journalières de 0, 1,8, 6,2 ou 33,6 mg de phénol/kg de m.c. dans l’eau potable pendant quatre semaines la suppression de la réponse immunitaire (Hsieh et al., 1992). Même si on n’a pas observé de signes cliniques manifestes de la toxicité, ni d’effet sur la consommation de nourriture ou d’eau, ni de lésions macroscopiques, ni d’écart du poids des organes à l’autopsie dans aucun groupe exposé, il y a eu suppression considérable de la production d’anticorps (nombre de cellules formatrices de plaques de lyse d’anticorps IgM pour 10^6 splénocytes, et anticorps sériques d’érythrocytes antimouton) en réponse à un antigène dépendant des cellules T (érythrocytes de mouton) aux deux doses maximales. On a observé une gamme d’autres effets immunitaires à la dose maximale seulement, notamment la suppression notable de la stimulation des lymphocytes spléniques par le lipopolysaccharide mitogène des cellules B, par la phytohémagglutinine mitogène des cellules T ainsi que par le pokeweed (phytolaque) mitogène des cellules T et B (mais non par la concanavaline) et une suppression notable de la capacité de prolifération des lymphocytes spléniques, en réponse à des alloantigènes (réaction lymphocytaire mixte). Le nombre d’érythrocytes circulants a considérablement diminué, relativement aux témoins, à toutes les doses, d’une manière proportionnelle à cette dernière, tandis que l’hématocrite n’était notablement supprimé qu’à la dose maximale. On a observé une diminution du nombre de neurochimiques dosés dans le cerveau, principalement à la dose maximale, même si les concentrations de dopamine dans le corps strié avaient notablement diminué à toutes les doses. On considère que la CMEO correspondant à la suppression immunitaire est de 6,2 mg/kg de m.c./j, la CMEO correspondant aux effets hématologiques et neurobiochimiques étant de 1,8 mg/kg de m.c./j.

Les effets immunologiques, que l’on a considérés d’importance clinique incertaine, pourraient être reliés au stress. En outre, les données semblent parfois incohérentes; la baisse du nombre de cellules rouges du sang circulant, aux doses inférieures, n’a pas été accompagnée par celle de l’hématocrite, manifestation souvent associée à une cellularité accrue de compensation, en raison de la consommation moindre d’eau potable, bien que, dans cette étude, on n’ait pas observé d’effet sur la consommation d’eau.

Dans une étude subchronique ancienne, dans laquelle les rats avaient reçu 50 ou 100 mg de phénol/kg de m.c., par gavage, dans un véhicule aqueux, 5 jours par semaine, pendant 6 mois, on avait observé de légères transformations histopathologiques dans le foie et des lésions bénignes à modérées des reins, accompagnées par une faible augmentation du poids du foie et du rein, à la dose maximale (non statistiquement significatif) [Adams, 1944]. La CMEO des effets histopathologiques sur le rein est considérée comme étant de 50 mg/kg de m.c./j.

Par contraste, dans une étude visant à déterminer la gamme des concentrations efficaces, dans le cadre du National Toxicology Program (NCI, 1980), on n’a observé aucune transformation macroscopique ni microscopique, dans une vaste gamme de tissus, chez les rats ou les souris des deux sexes exposés 13 semaines au phénol dans l’eau potable, à des concentrations de 100 à 10 000 mg/L (que l’on estime équivaloir à peu près à des doses journalières de 14 à 819 mg/kg de m.c. chez les rats et à 13 à 380 mg/kg de m.c. chez les souris; ATSDR, 1989). On a observé à la concentration maximale une diminution de l’absorption d’eau et une baisse du gain pondéral (de 16 % chez les rats et de 26% chez les rats; de 80 % chez les souris mâles et de 33 % chez les femelles) [non statistiquement significatif]. La CSENO (fondée sur l’interpolation linéaire à

En raison de la petitesse des groupes, la CSENO correspondant aux transformations histopathologiques des divers organes est imprécise, mais on pourrait la considérer comme égale à 12 mg/(kg de m.c./j). Les CE où on a observé des effets sur le comportement sont signalés dans le rapport original, de façon quelque peu floue, mais les auteurs ont déterminé que la « CSENO » correspondante était de 12 mg/(kg de m.c./j) (Moser et al., 1995).
partir de la dose maximale) et la CMENO sont considérées comme étant à peu près de 236 et de 819 mg/kg de m.c./j), respectivement, chez les rats, et de 124 ainsi que de 380 mg/kg de m.c./j), respectivement, chez les souris, d’après les effets observés sur la masse corporelle, accompagnés par une baisse de la consommation d’eau.

Dans une étude limitée aux effets sur le système hématopoïétique, on a signalé chez les cobayes à qui on avait administré 0,5 ou 40 mg de phénol/kg de m.c./j) par voie orale pendant 3,5 mois la thrombocytopénie, une légère éosinophilie, la réticulocytose et la baisse de l’indice de maturation des érythroblastes de la moelle osseuse, bien que seul le premier effet ait été clairement relié à la dose et ait été signalé comme statistiquement significatif (Sudakova et Nosova, 1981). La CMEO correspondant aux effets hématopoïétiques est considérée comme étant de 0,5 mg/kg de m.c./j).

2.4.3.3 Toxicité chronique et cancérogénicité

La toxicité chronique par voie orale et la cancérogénicité du phénol chez les animaux de laboratoire ont été examinées dans deux vieilles études sur des rats Fischer 344 et des souris B6C3F1, effectuées dans le cadre du National Toxicology Program (NCI, 1980). Après exposition des rats au phénol dans l’eau potable pendant 2 années, à des concentrations de 2 500 ou de 5 000 mg/L (équivalent à peu près à des doses journalières de 356 et de 523 mg/kg de m.c.; ATSDR, 1989), on a observé une diminution de la masse corporelle moyenne des animaux des deux sexes du groupe exposé à la dose élevée, à partir de la 20e semaine. La consommation d’eau dans les deux groupes a diminué; cependant, celle de la nourriture était comparable à celle des témoins. On a observé une incidence significativement accrue des phéochromocytomes des médullosurrénales, des carcinomes des cellules C de la thyroïde, des tumeurs interstitielles du testicule et des leucémies ou des lymphomes, uniquement chez les mâles exposés à la faible dose. On a observé un taux spontanément élevé de leucémies ou de lymphomes chez les témoins appariés de l’étude, par rapport aux témoins historiques. On n’a observé aucun effet histopathologique non néoplasique dans aucun des groupes soumis aux doses et aucun effet relié à la dose sur la survie. D’après le taux spontanément élevé de leucémies ou de lymphomes observés chez les animaux témoins et l’absence d’effet positif pour les divers types de tumeurs dans le groupe exposé à la dose élevée, les auteurs ont conclu que, dans les conditions dans lesquelles l’essai biologique s’était déroulé, le phénol n’était cancérigène ni pour les rats, ni pour les rongeurs. La CSENNO et la CM(E)NO correspondant aux effets non néoplasiques (baisse de la masse corporelle) chez les rats est considérée être de 280 et de 630 mg/kg de m.c./j), respectivement.

Lorsque l’on a administré, à des souris, de l’eau potable qui renfermait 2 500 ou 5 000 mg de phénol/L (que l’on a estimé équivaloir à peu près à des doses journalières de 356 et de 523 mg/kg de m.c.; ATSDR, 1989), pendant deux années, on n’a observé aucune augmentation de l’incidence des tumeurs, en quelque endroit que ce soit, chez aucun sexe, qui aurait été reliée à la dose (NCI, 1980). Dans aucun des groupes, on n’a observé d’effet histopathologique non néoplasique. La consommation d’eau et le gain pondéral moyen ont diminué en fonction de la dose dans tous les groupes, alors que la consommation de nourriture dans les deux groupes était comparable à celle des témoins. La CM(E)NO pour les effets non néoplasiques (diminution du gain pondéral, accompagnée par une consommation moindre d’eau) chez la souris est considérée comme étant de 356 mg/kg de m.c./j).

Dans une série d’études d’initiation et de promotion par voie cutanée, sur différentes souches de souris exposées d’abord à une seule dose DMBA ou de B[a]P, on a effectué ensuite des applications répétées de solutions de phénol pendant 32 et 72 semaines (Salaman et Glendenning, 1957; Boutwell et Bosch, 1959; Wynder et Hoffmann, 1961). Le phénol a alors provoqué la promotion de la croissance de tumeurs malignes et bénignes attribuables au DMBA ou au B[a]P. Dans la plupart des souches, on n’a pas observé de tumeurs chez les souris exposées.
uniquement à la solution de phénol. Lorsque les tumeurs survenaient chez les souris exposées au phénol, elles étaient surtout bénignes et se limitaient presque entièrement aux concentrations de phénol (à 10 à 20 %) causant des lésions graves à la peau.

Dans deux études de la cocancérogenèse du phénol chez la souris, on a observé une légère réduction des tumeurs provoquées par le B[a]P lorsqu’on a appliqué simultanément le phénol et le B[a]P pendant 368 ou 460 jours, mais le phénol seul n’a provoqué aucune tumeur ou uniquement un simple papillome (Van Duuren et al., 1971 et 1973; Van Duuren et Goldschmidt, 1976).

2.4.3.4 Génotoxicité

Dans les systèmes d’essais non mammaliens, on a surtout obtenu des résultats négatifs pour ce qui concerne la mutation des gènes des bactéries après exposition au phénol, y compris dans le test standard d’Ames chez Salmonella typhimurium, en présence ou non d’activation métabolique par le foie du rat et de hamster provoquée par l’Aroclor (IARC, 1989; IPCS, 1994a) et dans des effets de mutation inverse chez Escherichia coli (JETOC, 1996).

Le phénol s’est révélé génotoxique dans de nombreuses études in vitro de lignées cellulaires mammaliennes. On a observé une augmentation de la fréquence des mutations chez les fibroblastes de hamster chinois (Paschin et Bahitova, 1982), dans les cellules de lymphomes de souris (Wagenheim et Bolcsfoldi, 1988) et dans les cellules embryonnaires du hamster syrien (Tsutsui et al., 1997), après incubation avec le phénol et avec ou sans système d’activation métabolique. Des aberrations chromosomiques, l’échange de chromatides sœurs ou la formation de micronoyaux sont apparus dans les cellules ovariennes du hamster (Ivett et al., 1989; Miller et al., 1995), les cellules embryonnaires de hamster syrien (Tsutsui et al., 1997) et, dans certaines études, chez les lymphocytes humains (Morimoto et Wolff, 1980; Morimoto et al., 1983 et 1993; Ereksen et al., 1985; Jansson et al., 1986; Yager et al., 1990), après exposition in vitro au phénol. Le phénol a endommagé l’ADN ou inhibé la synthèse de ce dernier chez diverses cellules de mammifères in vitro (Painter et Howard, 1982; Pellack-Walker et al., 1985; Garberg et al., 1988; Reddy et al., 1990; Kolachana et al., 1993).

Dans les études in vivo, chez la souris, l’augmentation du nombre de micronoyaux était statistiquement significative, bien que petite, à des doses intrapéritonéales semblables, utilisées dans cinq études de quatre auteurs (120 mg/kg de m.c., Marrazzini et al., 1994; 265 mg/kg de m.c., Ciranni et al., 1988a et b; 80 mg/kg de m.c., Shelby et al., 1993; et 160 mg/kg de m.c., Chen et Eastmond, 1995). Les résultats ont été négatifs dans trois études supplémentaires dont le plan d’expérience n’était pas tout à fait optimal, et dans lesquelles on a examiné les effets en un seul moment (Gocke et al., 1981; Gad-El Karim et al., 1986; Barale et al., 1990).

Dans une étude étalée sur plusieurs générations (5) de souris, des doses journalières d’à peine 2 mL d’une solution de 0,08 mg de phénol/L (équivalent approximativement à la dose journalière de 6,4 µg/kg de m.c.) ont augmenté, proportionnellement à la dose, la fréquence des aberrations chromosomiques dans les spermatogonies et les spermatocytes de premier ordre des souris mâles, à chaque génération, de même que la fréquence des aberrations dans chaque génération successive (Bulsiewicz, 1977). On n’a mesuré aucune autre variable d’effet dans l’étude. Dans la seule autre étude in vivo dans laquelle on a examiné la survenue d’aberrations chromosomiques après l’exposition au phénol, on n’a observé aucune augmentation de ces dernières dans la moelle osseuse des rats, après exposition par voie orale ou intrapéritonéale à des concentrations ayant pu atteindre 510 et 180 mg de phénol/kg de m.c., respectivement (Thompson et Gibson, 1984).

Dans d’autres études in vivo, avec des mammifères, on n’a pas observé plus de ruptures des brins simples de l’ADN testiculaire du rat (Skare et Schrotel, 1984) ni de la moelle osseuse de la souris (Kolachana et al., 1993), aux doses
intrapéritonéales de 75 à 79 mg/kg de m.c. ou dans les adduits d’ADN de la moelle osseuse, de la glande de Zymbal, du foie ou de la rate, après administration, à des rats, de quatre doses journalières orales de 75 mg de phénol/kg de m.c. (Reddy et al., 1990).

2.4.3.5 Toxicité pour la reproduction et le développement

On n’a observé aucun effet histopathologique sur les gonades de rats et de souris des deux sexes après administration de phénol dans l’eau potable pendant 13 semaines (aux doses journalières approximatives de 819 et de 380 mg/kg de m.c., aux rats et aux souris, respectivement; ATSDR, 1989) ou pendant deux années (aux doses journalières approximatives de 630 et 523 mg/kg de m.c., aux rats et aux souris, respectivement; ATSDR, 1989) [NCI, 1980]. Dans une étude assez ancienne, mal étayée, étalée sur plusieurs générations (Heller et Pursell, 1938), on a signalé chez les rats à qui on avait administré des concentrations journalières très fortes de phénol (environ 980 et 1 680 mg/kg de m.c.; Santé Canada, 1994) dans l’eau potable, une croissance ralentie (chez les ratons) et l’absence de reproduction.

On a examiné la toxicité du phénol pour le développement dans plusieurs études chez des rats et des souris. Dans une étude bien menée et bien étayée de Jones-Price et al. (1983a), on a observé une diminution, proportionnelle à la dose, de la masse corporelle moyenne du fœtus par portée chez des rats CD exposés à 120 mg/kg de m.c./j), nourris par gavage pendant les journées 6 à 15 de la gestation, en l’absence de toxicité pour les mâres (d’après les signes cliniques, le gain pondéral des mâres, le poids du foie des mâres et le poids de l’utérus gravide). À la dose de 60 mg/kg de m.c./j), il n’y a eu aucun effet et on n’a observé aucune augmentation du taux de mortalité ou des défauts de conformation chez les fœtus en fonction de la dose — chez la progéniture : CSENO = 60 mg/kg de m.c./j); CMENO = 120 mg/kg de m.c./j); chez les mâres : CSENO = 120 mg/(kg de m.c./j). Par contraste, aucun effet ne s’est manifesté sur le nombre de points d’implantation, de résorptions du fœtus, de pertes antérieures et postérieures à l’implantation et de fœtus vivants chez les rats Charles River, aux doses maternelles de phénol pouvant atteindre 180 mg/(kg de m.c./j) aux journées 6 à 15 de gestation, bien qu’il y ait eu diminution du gain pondéral chez les mères associée à une baisse de la consommation de nourriture (Procter et Gamble, 1993) — chez la progéniture : CSENO = 180 mg/(kg de m.c./j); chez les mâres : CMEO = 120 mg/(kg de m.c./j).

Narotsky et Kavlock (1995) signalent une gamme d’effets périnatals négatifs chez les rats Fischer 344 exposés à 40 et à 53 mg de phénol/(kg de m.c./j), aux journées 6 à 19 de gestation, y compris une baisse significative de la taille des portées et, à la dose maximale, l’augmentation des pertes prénatales — chez la progéniture et les mâres : CMENO = 50 mg/(kg de m.c./j). Enfin, on a observé la paralysie des membres inférieurs ou une queue courte ou torse chez des rats Sprague-Dawley exposés à 667 ou 1 000 mg/(kg de m.c./j) à la journée 11 de gestation, mais non à 333 mg/kg) [Kavlock, 1990] — chez la progéniture et les mâres : CSENO = 140 mg/(kg de m.c./j); CMENO = 280 mg/(kg de m.c./j); CSENO = 140 mg/(kg de m.c./j). Il n’y avait pas de manifestation convaincante d’effets tératogènes.
2.4.4 Humains

2.4.4.1 Exposition et irritation aiguës

Le phénol n’a pas causé de sensibilisation à la concentration de 2 %, chez 25 volontaires, après une série de cinq expositions de 48 h, chacune précédée d’un prétraitement de 24 h au laurylsulfate de sodium (Kligman, 1966).

2.4.4.2 Études épidémiologiques

Le pouvoir cancérogène du phénol a été examiné dans un petit nombre d’études d’épidémiologie analytique. On a signalé un taux excessif de mortalité dû au cancer du poumon dans une étude rétrospective des cohortes (Dosemeci et al., 1991), ainsi que dans une étude de cas/témoins emboîtés (Kauppinen et al., 1993), dans les lieux de travail où on utilisait le phénol. Il existait aussi une tendance non significative entre la mortalité due au cancer des poumons, en fonction de la durée d’exposition au phénol, dans une étude rétrospective des cohortes de travailleurs de l’industrie du bois susceptibles d’être exposés au phénol (Blair et al., 1990). Cependant, l’augmentation signalée par Dosemeci et al. (1991) se bornait principalement aux travailleurs qui n’étaient pas exposés au phénol, tandis que dans l’étude de cas/témoins, il n’y avait pas de tendance claire dans la mortalité due au cancer du poumon, du fait de la durée de l’exposition (Kauppinen et al., 1993). En outre, les concentrations de phénol n’ont été quantifiées dans aucune des études, et, dans tous les cas, les sujets pouvaient avoir été exposés à un certain nombre d’autres substances (notamment le formaldéhyde, pour lequel il n’existe qu’un nombre limité de preuves permettant de l’associer au cancer du poumon). Pour ce qui concerne les autres sièges du cancer, aucune association cohérente entre l’exposition au phénol et la mortalité accrue due au cancer ne se trouvait dans les études épidémiologiques (Wilcosky et al., 1984; Dosemeci et al., 1991; Siemiatycki, 1991; Pottern et al., 1992; Kogevinas et al., 1995).

On a aussi examiné les effets non néoplasques dans quelques études épidémiologiques. Dans une étude rétrospective des cohortes et dans une étude de cas/témoins emboîtés de travailleurs d’une usine de caoutchouc susceptibles d’être exposés au phénol (on a simplement défini l’exposition comme le travail dans une unité de transformation où l’emploi du phénol était autorisé), on a observé une augmentation de la mortalité due aux maladies cardiovasculaires, et une certaine association avec la durée d’exposition (Wilcosky et Tyroler, 1983). Cependant, lorsqu’on a exclu de l’analyse des travailleurs exposés à d’autres solvants, les chiffres étaient trop petits pour tirer des conclusions significatives. Par contraste, Dosemeci et al. (1991) ont observé des tendances à la baisse de la mortalité due à une cardiopathie attribuable à l’artériosclérose, de même qu’à l’emphysème et à la cirrhose du foie, avec une exposition accrue au phénol (sous forme d’exposition cumulative, de la durée d’exposition ou d’un potentiel de contact avec le peau) dans une étude rétrospective de cohortes de travailleurs de cinq usines produisant ou utilisant du phénol ou du formaldéhyde.

Dans un petit groupe d’employés de bureau exposés six mois à un mélange comprenant du phénol (environ 1,3 mg/m³ d’air), on a observé une baisse significative des sous-populations de lymphocytes et la suppression de la prolifération des lymphocytes provoquée par la phytohémagglutinine et des alloantigènes, comparativement à ce qui a été observé chez les volontaires qui leur avaient été appariés en fonction de l’âge et du sexe. Certains de ces effets étaient plus prononcés, coïncidant avec une baisse du dénombrement des érythrocytes.
et une augmentation du nombre de monocytes et d’éosinophiles, dans le sous-ensemble de travailleurs où la concentration de phénol dans l’urine était maximale (Baj et al., 1994). Shamy et al. (1994) ont signalé des phénomènes hématologiques et une augmentation de la concentration d’enzymes et d’électrolytes sériques, d’une signification clinique incertaine, dans un petit groupe de travailleurs masculins exposés à 21,2 mg de phénol/m³.

2.5 Toxicocinétique et mécanisme d’action

Dès le contact avec la peau, le phénol est rapidement absorbé. Il en est de même dans le système digestif et dans le poumon des animaux et des humains. Une fois absorbé, il est rapidement distribué dans les tissus et éliminé sous forme de métabolites, principalement dans l’urine (Capel et al., 1972; Babich et Davis, 1981; Deichmann et Keplinger, 1981; Hiser et al., 1994; Hughes et Hall, 1995). Le métabolisme du phénol fait principalement intervenir la conjuguaison directe avec l’acide glucuronique et les sulfates de l’intestin et du foie et, dans une moindre mesure, des autres tissus. Un faible pourcentage de la dose absorbée de phénol est métabolisé en hydroquinone par les enzymes du cytochrome P450. L’hydroquinone est ensuite conjuguée aux sulfates et à l’acide glucuronique. Les métabolites urinaires du phénol que l’on a identifiés chez les mammifères, y compris les humains, sont le glucuronure de phénylé, le sulfate de phénylé et les conjugués correspondants de l’hydroquinone — glucuronure de 4-hydroxyphénylé et sulfate de 4-hydroxyphénylé (Capel et al., 1972; Hiser et al., 1994; Hughes et Hall, 1995). D’après les études effectuées chez les rongeurs et les primates non humains, la conjuguaison avec les sulfates prédomine; cependant, aux doses élevées (au-dessus de 1 à 10 mg/(kg de m.c./j)), la saturation de la sulfatation augmente la proportion de métabolites urinaires recouvrés sous forme de conjugués glycuronurés de l’hydroquinone (Mehta et al., 1978; Weitering et al., 1979; Koster et al., 1981; Hiser et al., 1994; Kenyon et al., 1995). Les données disponibles révèlent aussi des écarts liés à l’âge dans la capacité de conjuguaison, cette capacité étant moindre chez les rats immatures, ce qui accroît l’excrétion du conjugué glycuronuré de l’hydroquinone chez les jeunes animaux (Heaton et Renwick, 1991).

Le profil de la toxicité de l’hydroquinone, que l’on pense être le métabolite toxique du phénol, est tout à fait semblable à celui du composé père, le premier induisant plus puissamment des effets semblables. Chez les rats exposés à long terme par voie orale, on observe une manifestation de la toxicité pour le rein à partir de la dose de 25 mg d’hydroquinone/(kg de m.c./j). Ce composé est un génotoxique plus puissant que le phénol, étant mutagène chez les cellules de mammifères in vitro et clastogène in vivo, augmentant les tumeurs principalement bénignes du rein chez les rats mâles et du foie chez les souris mâles et femelles. On a observé un effet toxique pour le développement, uniquement aux doses toxiques chez les mères (IPCS, 1994b). Les rats produisent plus d’hydroquinone que les humains, éliminant 21 % du phénol ingéré, marqué au ¹⁴C, sous la forme de conjugués de ce métabolite, contre 1 % chez les humains (Capel et al., 1972).
3.0 ÉVALUATION DU CARACTÈRE « TOXIQUE »
AU SENS DE LA LCPE

3.1 LCPE 11a) : Environnement

L’évaluation du risque que pose pour l’environnement une substance figurant sur la liste des substances d’intérêt prioritaire se fonde sur les méthodes exposées dans Environnement Canada (1997a). L’analyse des voies d’exposition, puis la détermination du récepteur sensible servent à sélectionner les paramètres de l’évaluation environnementale (p. ex., effets négatifs sur la reproduction d’espèces sensibles de poissons dans une communauté). Pour chaque paramètre, on choisit une valeur estimée de l’exposition (VEE) et on détermine une valeur estimée sans effet observé (VESEO), en divisant la valeur critique de la toxicité (VCT) par un coefficient. On calcule pour chacun des paramètres de l’évaluation un quotient prudent (ou très prudent) (VEE/VESEO), afin de déterminer s’il existe ou non un éventuel risque écologique au Canada. Si ces quotients sont inférieurs à un, on peut en conclure que la substance ne pose pas de risque important pour l’environnement, et l’évaluation du risque se termine là. Si, cependant, le quotient est supérieur à un, il faut procéder, pour ce paramètre, à une analyse dans laquelle on pose des hypothèses plus réalistes et on examine la probabilité et l’ampleur des effets. Dans le deuxième cas, on tient davantage compte des causes de variabilité et d’incertitude dans l’analyse du risque.

3.1.1 Paramètres de l’évaluation pour les rejets dans l’eau

espèces de poissons. Diverses espèces de poissons se nourrissent de la végétation aquatique, de phytoplancton, de zooplancton, d’invertébrés et de vertébrés benthiques, etc. Les vertébrés omnivores nourrissent les vertébrés carnivores.

Le paramètre le plus sensible reconnu pour les espèces aquatiques a été la reproduction de la truite arc-en-ciel, mesurée par la létalité du phénol pour ses embryons et ses alevins.

3.1.1.2 Paramètres de l’évaluation pour les rejets dans l’air

Les paramètres de l’évaluation retenus pour les mammifères terrestres ont été l’abondance et la productivité des herbivores. Il importe de préserver ces dernières, puisque les herbivores forment des maillons importants de la chaîne trophique, en étant à la fois prédateurs et proies. Les herbivores tels que le minuscule campagnol des champs (*Microtus pennsylvanicus*) sont susceptibles d’être le plus exposés, en raison de leur rythme respiratoire rapide et de l’intensité de leur métabolisme. Les paramètres de mesure les plus sensibles reconnus chez les herbivores sont les effets exercés sur le rat après inhalation et ingestion.

Les organismes tels que les végétaux et les invertébrés vivant près des sources ponctuelles sont également susceptibles d’être exposés au phénol présent dans l’air, l’eau de pluie et le sol. L’exposition par le sol peut provenir du contact avec le phénol présent dans les particules de sol, dans l’eau du sol et dans la vapeur. Les paramètres de l’évaluation retenus pour l’exposition au phénol du sol sont la diversité, l’abondance et la reproduction des végétaux et des invertébrés terrestres. La végétation herbacée est importante, parce qu’elle nourrit et abrite les organismes terrestres de même qu’elle sert de couverture au sol pour le protéger de l’érosion et en conserver l’humidité. Le paramètre de mesure le plus sensible reconnu pour les végétaux terrestres a été l’inhibition de la levée des semis de laitue.

3.1.2 Caractérisation du risque environnemental

3.1.2.1 Organismes aquatiques

Les concentrations dans l’effluent final (c’est-à-dire au point de rejet) ont servi de mesure de l’exposition des organismes aquatiques, parce que l’on ne connaissait pas les concentrations dans l’eau à proximité des sources ponctuelles. On a recensé les concentrations signalées, il y a peu, dans les secteurs des produits des pâtes et papiers et du bois, de l’acier et des métaux et du raffinage et des produits pétroliers de même que pour les stations municipales de traitement des eaux usées, pour montrer les degrés actuels d’exposition (tableau 4).

La VCT a été choisie dans un ensemble de données constitué de résultats d’études chroniques ayant porté sur plusieurs types d’organismes. C’est la CL25 après 27 j de 0,01 mg/L pour les stades de l’embryon et l’alevin de la truite arc-en-ciel (Birge et al., 1979), l’espèce aquatique la plus sensible trouvée. Pour l’évaluation « très prudente », on a calculé la VESEO en divisant la VCT (0,01 mg/L) par 10, facteur tenant compte de l’incertitude entourant l’extrapolation de la CL25 à une CSEO à long terme, de l’extrapolation des conditions de laboratoire aux conditions de terrain et des variations interspécifiques et intraspécifiques de la sensibilité. On obtient ainsi une VESEO de 0,001 mg/L.

Dans la colonne 1 du tableau 4 sont illustrés les sources et le nombre d’emplacements par source (c’est-à-dire le texte en gras) pris en considération dans l’évaluation « très prudente ». Dans la colonne 2, les VEE représentent la concentration moyenne mensuelle maximale de phénol et de composés phénoliques totaux dans l’effluent final des installations de chaque source. Par exemple, dans le secteur des produits de l’acier et des métaux, huit VEE sont représentées dans la gamme de 0,006 à 0,34 mg/L. On s’est servi des concentrations moyennes mensuelles, parce que la VESEO a été tirée d’une étude toxicologique effectuée sur 27 jours. Ainsi, aux VESEO et aux
TABLEAU 4 Évaluation très prudente : risque environnemental pour la truite arc-en-ciel

<table>
<thead>
<tr>
<th>Source ou secteur 1</th>
<th>Intervalle des VEE maximales (mg/L)</th>
<th>VCT (mg/L)</th>
<th>Coefficient</th>
<th>VESEO (mg/L)</th>
<th>Quotient <1</th>
<th>Quotient >1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pâtes, papiers et produits du bois :</td>
<td>n.d. 2–0,40 (de phénol)</td>
<td>0,01</td>
<td>10</td>
<td>0,001</td>
<td>11 usines</td>
<td>15 usines</td>
</tr>
<tr>
<td>Acier et produits métalliques :</td>
<td>0,006–0,34 (de composés phénoliques totaux)</td>
<td>0,01</td>
<td>10</td>
<td>0,001</td>
<td>aucun exutoire</td>
<td>8 exutoires</td>
</tr>
<tr>
<td>Raffinage et produits pétroliers :</td>
<td>0,0004–2,03 (de composés phénoliques totaux)</td>
<td>0,01</td>
<td>10</td>
<td>0,001</td>
<td>1 raffinerie</td>
<td>15 raffineries</td>
</tr>
<tr>
<td>Stations municipales de traitement des eaux usées :</td>
<td>0,002–2,60 (de composés phénoliques totaux)</td>
<td>0,01</td>
<td>10</td>
<td>0,001</td>
<td>aucune station</td>
<td>31 stations</td>
</tr>
</tbody>
</table>

2 n.d. = non décelé.
3 Évaluation environnementale effectuée dans quatre usines dont le nombre total d’exutoires est de huit.

VEE correspondent des périodes d’exposition semblables. Quant aux stations municipales de traitement des eaux usées, les concentrations moyennes mensuelles n’étaient pas disponibles; les VEE représentent les concentrations maximales mesurées dans des échantillons prélévés au hasard ou composites de 24 h. Faute de pouvoir disposer de concentrations de phénol, on a plutôt utilisé les concentrations de composés phénoliques totaux.

Les résultats de l’évaluation « très prudente » sont présentés au tableau 4. Ces résultats montrent, par exemple, que les concentrations moyennes mensuelles maximales de composés phénoliques totaux excèdent la VESEO, dans 15 des 16 raffineries de pétrole, et produisent un quotient supérieur à l’unité. Comme l’analyse était « très prudente », les risques pour les populations d’organismes aquatiques sont considérés comme négligeables, dans le cas de la raffinerie ayant un quotient inférieur à l’unité. L’évaluation « très prudente » concernant les raffineries dont le quotient est au moins égal à l’unité est passée à une évaluation prudente. La même analyse a été effectuée pour les autres sources.

L’ensemble des données toxicologiques sur le phénol est assez considérable. L’analyse en montre que la truite arc-en-ciel et la grenouille léopard, au début de leur existence, sont plus sensibles, d’au moins deux ordres de grandeur,
que les autres organismes aux effets du phénol. Le coefficient de 10 intervenant dans l’évaluation « très prudente » a donc été ramené à 2 pour l’évaluation prudente. On est ainsi parvenu à une VESEO prudente de 0,005 mg/L, qui exprime la létalité des premiers stades du cycle de vie de la truite arc-en-ciel.

On obtient les VEE de l’évaluation prudente en divisant les VEE de l’évaluation « très prudente » par un coefficient prudent et général de dilution de 10, pour tous les types d’étendues d’eau, à tous les emplacements, afin d’estimer les concentrations ambiantes près des exutoires (annexe B d’Environnement Canada, 1998a). Pour affiner les VEE, l’évaluation prudente a tenu compte de la quantité de phénol dans les composés phénoliques totaux. Quand on connaissait cette quantité pour une source donnée, on a obtenu les VEE en divisant par 10 (facteur de dilution) les VEE résultant de l’évaluation « très prudente », puis en multipliant ce nouveau quotient par la quantité estimative de phénol dans les composés phénoliques totaux. La quantité de phénol dans ces composés a été estimée à 11 % dans le secteur du raffinage et des produits du pétrole et à 1 % dans les stations municipales de traitement des eaux usées (Environnement Canada, 1998a).

Dans le tableau 5, les résultats de l’évaluation prudente montrent, par exemple, que les concentrations ambiantes estimatives maximales de phénol près des exutoires de deux des 15 raffineries excédaient la VESEO et donnaient un quotient supérieur à l’unité. Comme l’analyse était prudente, les risques posés par le phénol aux populations d’organismes aquatiques sont considérés comme négligeables, dans le cas des raffineries auxquelles correspond un quotient inférieur à l’unité. L’évaluation prudente des deux raffineries auxquelles correspondait un quotient égal ou supérieur à l’unité est passée à une analyse probabiliste du risque. La même analyse a porté sur les autres sources; résultat : l’évaluation environnementale de quatre usines du secteur des pâtes et papiers et des produits du bois et de deux exutoires du secteur des produits de l’acier et des métaux est aussi passée à une analyse probabiliste du risque.

TABLEAU 5 Évaluation prudente : risque environnemental pour la truite arc-en-ciel

<table>
<thead>
<tr>
<th>Source ou secteur</th>
<th>Intervalle des VEE maximales</th>
<th>VCT (mg/L)</th>
<th>Coefficient</th>
<th>VESO (mg/L)</th>
<th>Quotient <1</th>
<th>Quotient >1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pâtes, papiers et produits du bois : 15 usines</td>
<td>0,000 1–0,040 (de phénol)</td>
<td>0,01</td>
<td>2</td>
<td>0,005</td>
<td>11 usines</td>
<td>4 usines</td>
</tr>
<tr>
<td>Acier et produits métalliques : 8 exutoires</td>
<td>0,000 6–0,034 (de composés phénoliques totaux)</td>
<td>0,01</td>
<td>2</td>
<td>0,005</td>
<td>6 exutoires</td>
<td>2 exutoires</td>
</tr>
<tr>
<td>Raffinage et produits pétroliers : 15 raffineries</td>
<td>0,000 01–0,022 (de phénol)</td>
<td>0,01</td>
<td>2</td>
<td>0,005</td>
<td>13 raffineries</td>
<td>2 raffineries</td>
</tr>
<tr>
<td>Stations municipales de traitement des eaux usées : 31 stations</td>
<td>0,000 002–0,003 (de phénol)</td>
<td>0,01</td>
<td>2</td>
<td>0,005</td>
<td>31 stations</td>
<td>aucune station</td>
</tr>
</tbody>
</table>

1 Estimées par application d’un coefficient hypothétique de dilution de 10.
2 Dans l’hypothèse, également, d’un taux de 11 % de phénol dans les composés phénoliques totaux.
3 Dans l’hypothèse, également, d’un taux de 1 % de phénol dans les composés phénoliques totaux.
Dans le cas des stations municipales de traitement des eaux usées, l’évaluation environnementale s’est terminée à l’évaluation prudente. Outre les données présentées dans le tableau 5, les autres données sur l’exposition due à cette source ont montré que, dans tous les cas, il est peu probable que le phénol ne cause d’effets négatifs sur les organismes vivant près des exutoires de ces stations. Les données qui ont servi à l’analyse comprenaient les concentrations de phénol dans les effluents finals de deux stations de l’Ontario, mesurées en 1997 (le phénol n’y a pas été décelé, à la limite de détection de 0,001 7 mg/L) et les concentrations de phénol des effluents finals de sept stations municipales de traitement des eaux usées de l’Ontario, mesurées en 1987 (concentration maximale de 0,017 3 mg/L) [section 2.3.2.4].

Pour les emplacements restants des trois secteurs industriels, on a effectué une analyse probabiliste du risque. Pour connaître les détails de chaque analyse et les données brutes utilisées, on consultera Environnement Canada (1998a). Les courbes des réactions des stades de l’embryon et de l’alevin de la truite arc-en-ciel et des stades de l’embryon et du têtard de la grenouille léopard en fonction de la concentration sont très semblables (figure 2); on peut donc s’attendre à obtenir des résultats semblables au terme de l’analyse probabiliste du risque en utilisant l’une ou l’autre des courbes. Cependant, comme la courbe de la truite arc-en-ciel montre une sensibilité plus grande aux concentrations faibles, elle a servi à la présente analyse.

La figure 3 montre la répartition des VEE dans le secteur du raffinage et des produits pétroliers ainsi que la courbe de la toxicité aux premiers stades du cycle biologique de la truite arc-en-ciel en fonction de la concentration. On a estimé les VEE par l’application d’un coefficient de dilution de 10 et d’un coefficient de 11 % de phénol dans les composés phénoliques totaux, à toutes les concentrations moyennes mensuelles dans l’effluent final, en 1995-1996 (405 valeurs), des deux raffineries dont l’évaluation est passée à l’analyse probabiliste du risque. En raison de la disponibilité des données, les 405 valeurs (variant de 0,000 1 à 0,031 2 mg/L) ont été calculées comme des moyennes mensuelles mobiles (p. ex., du 1er au 31 janvier, du 2 janvier au 1er février, etc.). En combinant l’exposition et la répartition des effets, il a été possible d’estimer les probabilités d’effets d’amplitude différente. À cette fin, les DE (c’est-à-dire exerçant un effet) tirées de la fonction présentée dans la figure 3 des réactions variant de 1 à 99 % ont été calculées et comparées avec la fonction de distribution cumulative des concentrations (figure 3). La combinaison de ces deux distributions a produit la courbe du risque de toxicité chronique pour la truite arc-en-ciel. La figure 4 montre, par exemple, qu’il existe une probabilité de 41 % d’une mortalité d’au moins 15 % aux premiers stades de la truite arc-en-ciel exposée au phénol des rejets d’effluents des deux pires raffineries observées au Canada. Les résultats montrent des probabilités plus fortes (84 %) d’effets mineurs (plus de 3 % de mortalité) et de faibles probabilités (2 %) d’effets plus graves (plus de 35 % de mortalité). Les résultats de l’analyse probabiliste du risque attachés au secteur des pâtes et papiers et des produits du bois ainsi que du secteur des produits de l’acier et des métaux sont très semblables, et sont présentés dans les figures 5 et 6, respectivement.
FIGURE 7 Analyse probabiliste du risque : résultats de la modélisation du risque, pour la communauté aquatique, de toxicité aiguë et chronique et comparaison avec la gamme des VEE, dans le cas de deux raffineries de pétrole, en 1995-1996

Exposition

Plusieurs faisceaux de preuves portent à croire que l’exposition a été vraisemblablement surestimée dans une partie ou dans la totalité des scénarios du risque envisagés à la section 3.1.2.1. Par exemple, pour chacun des huit exutoires d’aciéries, il a été posé que la concentration de phénol était égale à la concentration des composés phénoliques totaux. C’est une hypothèse très prudente, car le peu de données disponibles sur d’autres sources pour le milieu aquatique montre que le pourcentage de phénol dans les composés phénoliques totaux est généralement faible (11 % en moyenne dans les effluents des raffineries de pétrole et des usines de produits pétroliers, 1 % dans les effluents des stations municipales de traitement des eaux usées). Cependant, aucune information n’était accessible pour estimer la proportion de phénol dans les composés phénoliques totaux des effluents des aciéries.

L’examen des données brutes relatives aux concentrations mensuelles dans les effluents de chacun des secteurs industriels pris en considération a montré que les concentrations de phénol y ont diminué au cours des dernières années (Environnement Canada, 1998a). Les concentrations actuelles et à venir sont donc susceptibles d’être inférieures aux concentrations qui servaient à estimer les risques, dans l’évaluation « très prudente » employant l’analyse probabiliste du risque. En outre, les données découlant de la surveillance des effluents ont montré que la répartition des concentrations de phénol était presque toujours asymétrique vers la droite (c’est-à-dire que peu de concentrations étaient élevées et que la majorité d’entre elles étaient faibles). Les dépassements des concentrations efficaces pour les formes de vie sensibles étaient donc souvent attribuables à des fluctuations à court terme qui s’écartaient fortement des concentrations ordinaires dans l’effluent. Si ces dépassements étaient modestes, comme les données le montrent, il se pourrait donc que de nombreux systèmes se rétablissent en quelques semaines du traumatisme chimique qu’ils ont subi (Stephan et al., 1985).

3.1.2.1 Discussion

Dans la présente section, d’autres faisceaux de preuves concernant les exutoires industriels menaçant les organismes aquatiques sont l’objet d’une discussion.
Effets

L’analyse du risque montre clairement que seuls les stades du cycle biologique les plus sensibles de très rares organismes aquatiques sensibles (plus précisément la truite arc-en-ciel et la grenouille léopard; figure 2) pourraient souffrir de la présence de phénol aux concentrations observées près de plusieurs exutoires. Les données disponibles sur les effets montrent que ceux qui s’exercent aux dépens des premiers stades de la truite arc-en-ciel et de la grenouille léopard correspondent à des concentrations inférieures d’environ deux ordres de grandeur aux effets qui dérangent la plupart des autres organismes aquatiques (figure 7).

Comme on se soucie uniquement des premiers stades de vie des espèces aquatiques sensibles, il est probable que les fortes concentrations de phénol ne seront préoccupantes que durant la période qui va de la ponte au début de la croissance des alevins. Dans la plupart des régions du Canada, la truite arc-en-ciel fraie de la mi-avril à la fin juin, les œufs éclosant de 4 à 7 semaines plus tard (Scott et Crossman, 1973). Les truitelles commencent habituellement à s’alimenter 15 jours après l’éclosion et sortent des nids de la mi-juin à la mi-août. La grenouille léopard se reproduit d’avril à mai, les œufs éclosant dans les 2 semaines qui suivent (Froom, 1982). L’examen des concentrations ambiantes estimatives près des exutoires (VEE pour l’analyse probabiliste du risque) montre que 11 % seulement de ces concentrations ont excédé la VCT (CL25 après 27 j de 0,01 mg/L) au cours de cette période. Ce taux de 11 % découle de l’emploi de données portant sur quelques années seulement et il peut donc ne pas refléter l’exposition sur une période plus longue.

Au cours des premiers stades de vie, il est habituel de constater un taux élevé de mortalité chez la plupart des espèces aquatiques, notamment les salmonidés et les amphibiens (Power et Power, 1994 et 1995). Vu ce taux naturellement élevé, on peut se demander ce que son augmentation modeste, attribuable à l’exposition au phénol, signifie pour l’ensemble d’une population. Pour répondre à cette question, il faudrait un modèle à l’échelle de la population et des études de terrain, ce qui déborde le cadre de la présente évaluation. Cependant, plusieurs études ont montré qu’une modeste augmentation de la mortalité aux premiers stades peut être atténuée par un certain nombre de phénomènes compensatoires. Par exemple, la mortalité accrue due à l’exposition à un contaminant peut être annulée par la survie et la fécondité accrues des survivants, désormais moins dépendants de la densité (Ferson et al., 1996). Ferson et al. (1996) ont montré que l’omble de fontaine (Salvelinus fontinalis) ne subit pas de baisse d’effectifs lorsqu’elle est soumise à un stress modéré (p. ex., baisse de 20 % de la fécondité), mais que ses populations s’effondrent après certains points de rupture (p. ex., baisse de 75 % de la fécondité). Vu que la probabilité d’effets supérieurs à 35 % (de mortalité) sur les premiers stades de vie de la truite arc-en-ciel et de la grenouille léopard est faible (moins de 10 %), il semble peu probable que les populations près des exutoires industriels de phénol ne subissent d’importantes baisses.

3.1.2.1.2 Sommaire

Pour résumer, l’évaluation « très prudente » découlant de l’analyse probabiliste du risque a montré que :

- Les risques pour les premiers stades de vie des organismes aquatiques sensibles sont négligeables pour 22 usines de pâtes et papiers sur 26 de l’Ontario, 6 exutoires d’aciérie sur 8 du Canada, 14 raffineries et usines de produits pétroliers sur 16 du Canada et les 31 stations municipales de traitement des eaux usées du Canada sur lesquelles on possédait des données.
- Parmi les établissements restants, la probabilité d’effets supérieurs à 35 %, aux premiers stades de vie des espèces les plus sensibles exposées au phénol, près des exutoires, était faible (< 5 %).
- La probabilité que les concentrations de phénol près des exutoires provoquent des effets sur plus de 5 % des communautés aquatiques était
négligeable dans le cas de toutes les usines de pâtes et papiers, les aciéries, les raffineries de pétrole et les usines de produits pétroliers ainsi que les stations municipales de traitement des eaux usées examinées dans la présente évaluation.

Par conséquent, les résultats de l’évaluation « très prudente » faite par le truchement de l’analyse probabiliste du risque ainsi que d’autres faisceaux de preuves qui ont fait l’objet de la discussion ci-dessus montrent que le phénol provenant des sources ponctuelles industrielles et municipales constitue un faible risque pour les organismes aquatiques du Canada.

3.1.2.2 Organismes terrestres

Comme le prévoyait le modèle SCREEN3, la pire concentration atmosphérique dans les parages de la Compagnie 1 était supérieure de 4 ordres de grandeur aux concentrations attribuables aux Compagnies 2 et 3. En conséquence, la présente évaluation devait insister sur la possibilité d’effets découlant des rejets de la Compagnie 1.

3.1.2.2.1 Mammifères

On a estimé les effets sur les herbivores tels que le campagnol des champs au moyen de deux scénarios d’exposition : (1) par l’atmosphère seulement; (2) par l’atmosphère et la nourriture. Comme aucune donnée sur les effets n’a été retrouvée sur les herbivores, on s’est servi des effets du phénol sur le rat pour établir la VCT. Dans le scénario 1, la VCT est de 98 mg/m³, d’après une CSENO après 14 j (concentration maximale de l’essai; « sans limite ») correspondant à l’inhalation chez le rat (CMA, 1998). Pour les besoins de l’évaluation « très prudente », on a calculé la VESEO en divisant la VCT par un coefficient de 100, tenant compte de l’ensemble limité de données sur les effets de l’inhalation du phénol chez les mammifères, de l’incertitude entourant l’extrapolation des conditions de laboratoire aux conditions de terrain, des variations interspécifiques et intraspécifiques de la sensibilité et de l’extrapolation d’une valeur subchronique à une valeur correspondant à l’absence d’effets à long terme. La VESEO ainsi calculée est de 0,98 mg/m³.

La VEE utilisée dans l’évaluation « très prudente » était la moyenne maximale prévue sur 24 h de la concentration atmosphérique de 0,022 mg/m³ dans le champ le plus rapproché du premier émetteur de phénol au Canada, la Compagnie 1, mais à l’extérieur du terrain de l’usine. Cette concentration a été prédite à l’aide du modèle de dispersion atmosphérique ISCST3, par lequel on a simulé une période de 5,5 ans, à partir de données météorologiques. On a choisi la concentration sur 24 h, parce qu’elle permet d’arriver à une concentration d’exposition plus prudente et plus raisonnable que les valeurs prédites sur de plus courtes périodes (p. ex., 1 h).

Le quotient « très prudent » a été calculé comme suit :

\[
\text{Quotient} = \frac{\text{VEE}}{\text{VESEO}} = \frac{0,022 \text{ mg/m}^3}{0,98 \text{ mg/m}^3} = 0,02
\]

Ce quotient « très prudent » est inférieur à l’unité. Il est donc peu probable que le phénol causera des effets chroniques négatifs aux herbivores vivant dans le champ le plus rapproché du premier émetteur de phénol au Canada et exposés aux concentrations atmosphériques. Comme le pire cas de concentration troposphérique prédit par le modèle SCREEN3 était, à proximité de la Compagnie 1, supérieur de 4 ordres de grandeur à la concentration à proximité des deuxième et troisième émetteurs, il est peu probable que le phénol atmosphérique causera des effets négatifs chroniques aux herbivores vivant à proximité d’une autre source ponctuelle au Canada.

Pour compléter la preuve, on a aussi calculé un quotient « très prudent » à partir de la
La concentration atmosphérique maximale de phénol dosée au Canada, 0,476 mg/m³, décelée à proximité d’un train transportant du bois traité (Strosher, 1982). Même si la présente évaluation n’avait pas pour objet de tenir compte des emplois pesticides du phénol, on a obtenu un quotient de 0,5 par suite de l’emploi de cette concentration comme VEE. Ce résultat porte également à croire que le phénol n’est pas susceptible de causer d’effets négatifs par cette voie d’exposition.

L’emploi d’une CSENO « non limitée », l’emploi de la CSENO plutôt que de la CMENO et l’estimation d’une concentration atmosphérique sur 24 h plutôt que sur 14 jours, voilà qui contribue à renforcer le caractère « très prudent » de cette évaluation et montre que le phénol est encore moins susceptible de causer d’effets négatifs par cette voie d’exposition. Pour ce scénario, il n’était pas nécessaire de passer à une évaluation prudente.

Dans le scénario 2, on a utilisé le modèle WCEM d’exposition de la faune aux contaminants, mis au point par le Service canadien de l’Environnement Canada, pour estimer l’absorption journalière totale de phénol (c’est-à-dire la VEE) chez le campagnol des champs le plus rapproché de la Compagnie 1, à la faveur de la respiration (atmosphère) et de l’ingestion de nourriture (p. ex., pousses). À l’aide du modèle, on a calculé un débit journalier d’inhalation de 0,11 m³/j, à partir de l’équation allométrique (1) de Stahl (1967) [employant un coefficient de correction de 3, comme le recommandait l’U.S. EPA (1993), pour rapprocher le métabolisme standard de la valeur réelle] et d’une masse corporelle moyenne de 33,4 g pour la femelle du campagnol (Brochu et al., 1988) :

\[
\text{débit journalier d’inhalation (m}^3/j) = 0,002 171 \times \text{poids (g)}^{0,8}
\] (1)

On a choisi le poids estival pour refléter les conditions qui existent le printemps et l’été, saisons où le risque d’exposition par le régime herbivore est le plus grand. Multiplié par la valeur prédite maximale de la concentration moyenne sur 24 h, de 0,022 mg/m³, dans le champ le plus rapproché du premier émetteur de phénol dans l’atmosphère au Canada, le débit journalier d’inhalation (0,11 m³/j) devient, selon le modèle, la dose inhalée journalière de 0,071 mg/kg de m.c..

Le modèle WCEM a aussi servi à calculer la dose ingérée journalière, d’abord par calcul du métabolisme d’un animal vivant en liberté, à l’aide de l’équation allométrique (2) de Nagy (1987) :

\[
\text{métabolisme d’un animal en liberté (kcal/j)} = 2,514 \times \text{poids (g)}^{0,507}
\] (2)

où ce métabolisme comprend les dépenses énergétiques dans le métabolisme de base, la thermorégulation, la locomotion, la quête de nourriture, la fuite devant les prédateurs, la vigilance, la posture, etc. D’après les calculs du modèle WCEM, ce métabolisme est de 14,8 kcal/j.

Pour estimer l’ingestion journalière, il faut déterminer la quantité ingérée et la concentration de phénol dans le régime. Lindroth et Batzli (1984) ont analysé les habitudes alimentaires estivales du campagnol des champs, dans un habitat herbeux. Ils ont aussi déterminé, d’après le contenu stomacal, que le régime était ordinairement constitué à 65 % de pousses de dicotylédones (plantes à feuilles larges), à 29 % de pousses de monocotylédones (graminées ou céréales), à 4 % d’insectes, à 1 % de graines et à 1 % de champignons microscopiques. En utilisant ces proportions, le métabolisme de l’animal en liberté, l’efficacité énergétique brute et l’efficacité brute d’assimilation et en appliquant la méthode décrite dans l’U.S. EPA (1993), on a calculé, à l’aide du WCEM (annexe C, Environnement Canada, 1998a) que l’ingestion était de 22,4 g/j.

Le dépôt total journalier maximal de phénol dans le champ le plus rapproché (à 750 m de la cheminée) du premier émetteur de phénol a été prédit à l’aide du modèle de dispersion...
Un dépôt journalier total de phénol est estimé à 44,5 mg de phénol/m². Whittaker (1975) a estimé la biomasse végétale en poids sec par unité de surface, dans une prairie de la zone tempérée, à 0,2 à 5 kg/m², la moyenne étant de 1,6 kg/m² (poids sec). Si, par hypothèse, les graminées et la végétation à feuilles larges sont constituées à environ 80% d'eau, le poids humide calculé de la biomasse végétale par unité de surface est de 1 à 25 kg/m² et sa moyenne est de 8 kg/m². L'estimation la plus prudente de la concentration du phénol dans la végétation s'obtient en divisant le dépôt journalier total de phénol, que l'on pose comme tombant sur la végétation et comme étant assimilé par cette dernière, par la valeur minimale de la biomasse en poids humide de l'intervalle présenté ci-dessus. La concentration résultante de phénol dans la végétation est comme suit :

\[
\frac{\text{dépôt journalier total de phénol}}{\text{poids humide minimal de la biomasse végétale}} = \frac{44,5 \text{ mg/m}^2}{1 \text{ kg/m}^2} = 44,5 \text{ mg de phénol/kg de végétaux}
\]

On s'est servi de la concentration journalière de 44,5 mg de phénol/kg de végétaux pour estimer la concentration stationnaire dans la végétation à l'aide de l'équation suivante (Mackay, 1991) :

\[
\frac{\text{concentration journalière dans la végétation}}{(0,693/\text{demi-vie du phénol dans la végétation})} = \frac{44,5 \text{ mg/(kg de végétaux/j)}}{(0,693/2,3 \text{ j})} = 148 \text{ mg/kg de végétaux}
\]

où, « 0,693/demi-vie du phénol dans la végétation » est en j⁻¹, et la « demi-vie du phénol dans la végétation » est posée comme égale à la demi-vie du phénol dans l'eau (55 h). La concentration de phénol dans la végétation à l'équilibre par échange entre l'atmosphère et les végétaux a également été estimée au moyen de coefficients de partage et dans l'hypothèse d'un taux de 2% de lipides dans la végétation. Par cette méthode, les concentrations de phénol s'établissent à quelques ordres de grandeur sous les concentrations calculées par la méthode du dépôt présentée auparavant. On a donc préféré la méthode du dépôt parce qu'elle était plus prudente.

On s'est servi, comme données d'entrée dans le modèle WCEM, de la concentration de 148 mg de phénol/kg de végétaux et de 94% de l'ingestion journalière de 22,4 g (94% égale la proportion de pousses seulement; le reste du régime, par hypothèse, contient des quantités négligeables de phénol). Le modèle a ainsi estimé une ingestion journalière de 93 mg de phénol/kg de m.c. (annexe D, Environnement Canada, 1998a).

On a obtenu l'absorption journalière totale de phénol (VEE), par addition des doses journalières inhalées et ingérées, ce qui donne une VEE de 93 mg de phénol/kg de m.c.. Cette VEE pose par hypothèse que tout le phénol déposé sur la végétation pouvait être absorbé par le campagnol et qu'il n'a pas été excrété ni métabolisé avant que ne surviennent des effets au cours de cette exposition d'une journée.

La VCT est de 40 mg/(kg de m.c./j), d'après une CMENO (concentration minimale éprouvée; « non limitée ») correspondant à la réduction significative de la taille des portées chez le rat (Narotsky et Kavlock, 1995). (Bien que l'on n'ait pas confirmé les toxicités observées à cette dose pour les mères et les fœtus, au moyen d'autres études des effets sur le développement des rats, cette étude a été retenue parce qu'elle donne l'évaluation la plus prudente pour ce scénario « très prudent » et que la réduction de la taille des portées est nettement pertinente : effet sur les effectifs.) Pour l'évaluation « très prudente », la VESEO a été obtenue en divisant la VCT par 20, coefficient tenant compte de l'incertitude entourant l'extrapolation des conditions de laboratoire.
aux conditions de terrain, l’extrapolation de la CMENO en une valeur sans effet à long terme et tenant compte des variations interspécifiques et intraspécifiques de la sensibilité. Il s’ensuit que la VESEO était de 2 mg de phénol/(kg de m.c./j).

Le calcul du quotient « très prudent » se fait comme suit :

\[
\text{Quotient} = \frac{\text{VEE}}{\text{VESEO}} = \frac{93 \text{ mg/(kg de m.c./j)}}{2 \text{ mg/(kg de m.c./j)}} = 46,5
\]

Comme le quotient « très prudent » excède l’unité, l’évaluation environnementale de ce scénario est passée à une évaluation prudente.

Tel qu’il est mentionné dans les sections 2.3.2.1 et 2.3.2.7, la distribution des valeurs prédites des concentrations atmosphériques et des dépôts au sol est asymétrique à droite (c’est-à-dire qu’il y a peu de cas où les concentrations sont élevées). Dans l’évaluation « très prudente », le dépôt total journalier maximal de 44,5 mg de phénol/m² et la concentration maximale sur 24 h de phénol dans l’air de 0,022 mg/m³ ont servi à estimer l’exposition dans le champ le plus rapproché de la Compagnie 1. Ces valeurs, prédites par le modèle ISCST3, ne s’observent qu’au cours d’une seule journée en 5,5 ans. Elles ont été utilisées à dessein dans l’évaluation « très prudente », afin de surestimer l’exposition et de produire un scénario très prudent. L’évaluation prudente les a révisées pour donner une exposition plus réaliste au cours de cette période. Elle a utilisé les médianes des distributions (7 × 10^4 mg/m³ [phénol atmosphérique] et 3,05 mg/m² [dépôt au sol]). En effet, ces médianes représentent les valeurs les plus typiques à survenir au cours d’une période donnée ; elles sont donc des plus convenables pour calculer les concentrations stationnaires, qui reposent sur l’hypothèse d’un dépôt constant au cours d’une période de plusieurs semaines. De même, l’évaluation prudente a utilisé le poids humide moyen de la biomasse végétale de 8 kg/m² pour parvenir à une estimation plus réaliste de la concentration de phénol dans la végétation.

D’après ces valeurs révisées, cette concentration de phénol dans la végétation est estimée à :

À partir de ces valeurs, la concentration journalière de 0,38 mg de phénol/kg de végétaux a servi à estimer la concentration stationnaire dans la végétation à l’aide de l’équation suivante (Mackay, 1991) :

\[
\text{concentration journalière dans la végétation} = \frac{0,693 \text{ demi-vie du phénol dans la végétation}}{0,693/2,3 \text{ j}}
\]

où « 0,693/demi-vie du phénol dans la végétation » est en j⁻¹ et la « demi-vie du phénol dans la végétation » est posée égale à la demi-vie du phénol dans l’eau (55 h).

La concentration de 1,3 mg de phénol/kg de végétaux, la concentration médiane sur 24 h dans le champ (7 × 10^4 mg/m³), le débit journalier d’inhalation (0,11 m³/j) et 94 % de la quantité ingérée chaque jour (22,4 g/j) ont servi de données de départ dans le modèle WCEM, lequel a abouti à une VEE, pour les divers milieux, de 0,82 mg de phénol/(kg de m.c./j) [annexe E, Environnement Canada, 1998a].

La VESEO utilisée dans l’évaluation « très prudente » a également servi à l’évaluation prudente. Le quotient prudent se calcule comme suit :
Quotient = \(\frac{\text{VEE}}{\text{VESEO}} \)

= \(\frac{0,82 \text{ mg/(kg de m.c./j)}}{2 \text{ mg/(kg de m.c./j)}} \)

= 0,4

Ce quotient est inférieur à l’unité. Il est donc peu probable que des effets seront exercés sur les herbivores vivant dans le champ le plus rapproché du premier émetteur de phénol au Canada, et qui y sont exposés par inhalation et ingestion. Comme la pire concentration troposphérique prédite par le modèle SCREE3 est supérieure de 4 ordres de grandeur, près de la Compagnie 1, aux concentrations près des deuxième et troisième émetteurs, il est peu probable que le phénol causera des effets négatifs chroniques par exposition par inhalation chez les herbivores vivant près d’une source ponctuelle au Canada.

Pour estimer la concentration maximale du phénol dans la végétation et dans l’organisme du campagnol des champs, on pose comme hypothèse que la totalité du phénol s’est déposée sur la végétation et qu’elle a été assimilée par les végétaux. Cette hypothèse est prudente. En conséquence, il est probable que la concentration de phénol consommée par le campagnol, dans son régime, est surestimée. En outre, la VESEO contribue également au caractère prudent de cette évaluation, puisque, dans d’autres études sur le rat, on a observé que la toxicité pour les mères et les fœtus survenait uniquement à des doses supérieures à la CMENO déduite de l’étude sur laquelle la VCT est fondée. Il est donc peu probable que le phénol provoquera des effets négatifs chez les herbivores vivant près des sources ponctuelles au Canada. Il n’était pas nécessaire de procéder à une analyse probabiliste du risque.

3.1.2.2.2 Végétation terrestre

Pour l’exposition de la végétation terrestre par le sol, la VCT a été la CE à 5 j, de 79 mg/kg de poids sec, qui provoque l’inhibition de la levée des semis de la laitue (Environnement Canada, 1995). Pour l’évaluation « très prudente », on a calculé la VESEO en divisant la VCT par 10, coefficient qui tient compte de l’incertitude entourant l’extrapolation d’une CE, à une valeur sans effet à long terme, de l’extrapolation des conditions de laboratoire à celles de terrain ainsi que des variations interspécifiques et intraspécifiques de la sensibilité. La VESEO ainsi calculée était de 7,9 mg/kg de poids sec.

En 1995, la concentration maximale de phénol dans les sols de surface au Canada a été dosée sur place, à l’usine de la Compagnie 1. Elle était de 1,7 mg/kg de poids sec (Geologos Inc., 1997). Cette valeur a donc servi de VEE dans l’évaluation « très prudente ».

On a calculé le quotient « très prudent » comme suit :

Quotient = \(\frac{\text{VEE}}{\text{VESEO}} \)

= \(\frac{1,7 \text{ mg/kg de poids sec}}{7,9 \text{ mg/kg de poids sec}} \)

= 0,2

Le quotient « très prudent » de la toxicité pour la végétation terrestre est inférieur à l’unité. Il est donc peu probable que le phénol nuira à la végétation terrestre exposée de façon chronique par le sol, près des sources ponctuelles au Canada. Il était inutile de passer à l’évaluation prudente.

3.2 LCPE 11b : Environnement essentiel pour la vie humaine

Dès sa libération dans l’atmosphère, le phénol est susceptible d’en être éliminé par photo-oxydation (par réaction avec les radicaux hydroxyle et nitrate), photolyse et précipitation sous forme humide (Atkinson et al., 1987 et 1992; Bunce, 1996). Cette réactivité dans l’atmosphère confère à l’ozone un PCOP considérable; cependant, les faibles quantités en jeu rendent insignifiante la contribution de la molécule par rapport à celle des
autres substances à l’origine de la formation du smog. La réaction avec l’ozone est négligeable, et, comme la molécule est dépourvue d’atomes de chlore et de brome et que sa demi-vie est globalement courte, elle risque peu de contribuer à la destruction de l’ozone stratosphérique et aux changements climatiques (Bunce, 1996).

3.3 LCPE 11c) : Santé humaine

3.3.1 Calcul de l’exposition de la population

Les données sur les concentrations de phénol dans les divers milieux naturels au Canada que l’on peut employer pour estimer l’exposition de la population se bornent à de très rares échantillons d’air ambiant prélevés dans des sources ponctuelles, au cours d’études anciennes à l’étranger, et à des enquêtes canadiennes sur l’eau potable, les sols et les aliments, dans lesquels on décelé rarement le phénol. Une évaluation probabiliste significative de l’exposition est hors de question. Dans la présente section, on a obtenu des estimations déterministes moyennes de l’exposition dans l’environnement (à l’air, à l’eau, au sol et à la nourriture) de membres de la population générale du Canada. On a aussi estimé la pire absorption possible par les populations vivant près de sources ponctuelles industrielles de phénol, bien que, vu le caractère fragmentaire des données disponibles, il s’agisse d’estimations qui, selon toute vraisemblance, surestiment l’exposition. Enfin, on a estimé l’absorption chez les personnes utilisant des produits de consommation pouvant entraîner l’exposition au phénol (cigarettes, certains médicaments en vente libre).

Les estimations ponctuelles de l’absorption journalière moyenne (ramenée à la masse corporelle), fondées sur les données relatives à l’air ambiant, à l’eau potable, au sol et à la nourriture (résumées à la section 2.3.2) et les valeurs de référence relatives à la masse corporelle, au volume inhalé et aux quantités d’eau potable, de sol et de nourriture ingérées quotidiennement, pour six groupes d’âge discrets de la population canadienne sont présentées au tableau 6. D’après ces estimations, l’absorption estimative journalière totale de phénol dans la population générale qui ne fume pas varie d’environ de 0,06 à 0,71 µg/kg de m.c. (L’intervalle des estimations reflète principalement les estimations limites découlant des enquêtes, calculées hypothétiquement, au moyen de calculs distincts, d’une teneur en phénol nulle ou égale à la limite de détection dans les échantillons où on ne l’a pas décelé.) Bien que cela ne soit pas sûr, d’après ces estimations, l’ingestion de nourriture est vraisemblablement la principale voie d’exposition au phénol chez les non-fumeurs de tous les groupes d’âge dans les populations ne vivant pas à proximité des sources ponctuelles. C’est le cas même lorsque les concentrations de phénol sont tenues pour nulles dans les aliments où on n’a pas décelé ce composé, et cela est conforme aux propriétés physico-chimiques du phénol, selon lesquelles la substance n’est pas volatile, et aux résultats de la modélisation de la fugacité (section 2.3.1.6). En outre, le phénol devrait être présent dans les aliments d’origine animale, du fait de sa synthèse endogène par la micro flore intestinale. L’exposition par l’eau potable et le sol semble négligeable lorsqu’on la compare à l’exposition par le régime alimentaire.

L’exposition à l’air ambiant peut être considérablement supérieure chez les populations vivant à proximité de certaines sources ponctuelles. D’après les concentrations maximales signalées à proximité des usines industrielles de l’Alberta et de l’Ontario (section 2.3.2.1) et posant les mêmes valeurs de référence pour les volumes inhalés et la masse corporelle que dans la population générale, on estime que l’absorption maximale de phénol de l’air ambiant à proximité des sources ponctuelles varie de 12 à 34 µg/(kg de m.c./j) dans les différentes classes d’âge (tableau 7). On a également calculé l’exposition du pire cas ou l’exposition maximale à l’air ambiant à proximité d’une source ponctuelle en utilisant la concentration maximale de phénol sur 24 h (145 µg/m³) prédite par les modèles de dispersion...
TABLEAU 6

Dose journalière estimative de phénol attribuable aux divers milieux de l’environnement de la population générale au Canada

<table>
<thead>
<tr>
<th>Milieu</th>
<th>0-0,5 an ¹</th>
<th>0,5-4 ans ¹</th>
<th>5-11 ans ¹</th>
<th>12-19 ans ²</th>
<th>20-59 ans ¹</th>
<th>60 ans et +³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air ambiant</td>
<td>0,033</td>
<td>0,072</td>
<td>0,056</td>
<td>0,032</td>
<td>0,028</td>
<td>0,024</td>
</tr>
<tr>
<td>Eau potable</td>
<td>0,000 11</td>
<td>0,000 05</td>
<td>0,000 05</td>
<td>0,000 03</td>
<td>0,000 02</td>
<td>0,000 02</td>
</tr>
<tr>
<td>Sol</td>
<td>0,000 39</td>
<td>0,000 64</td>
<td>0,000 21</td>
<td>0,000 05</td>
<td>0,000 04</td>
<td>0,000 04</td>
</tr>
<tr>
<td>Nourriture 40</td>
<td>0,028-0,68</td>
<td>0,20-0,59</td>
<td>0,20-0,45</td>
<td>0,19-0,32</td>
<td>0,49-0,58</td>
<td>0,32-0,40</td>
</tr>
<tr>
<td>Total</td>
<td>0,06-0,71</td>
<td>0,27-0,66</td>
<td>0,26-0,51</td>
<td>0,22-0,35</td>
<td>0,52-0,61</td>
<td>0,34-0,42</td>
</tr>
</tbody>
</table>

Fumeurs de cigarettes11

| | 2,5-46 | 2,5-46 | | | | |

1 Par hypothèse, pesant 7,6 kg, respirant 2,1 m³ d’air par jour, buvant 0,2 L d’eau du robinet (à l’exclusion des boissons renfermant de l’eau du robinet) par jour et ingérant 30 mg de sol par jour (EHD, 1997).

2 Par hypothèse, pesant 15,6 kg, respirant 9,3 m³ d’air par jour, buvant 0,2 L d’eau du robinet (à l’exclusion des boissons renfermant de l’eau du robinet) par jour et ingérant 100 mg de sol par jour (EHD, 1997).

3 Par hypothèse, pesant 31,2 kg, respirant 14,5 m³ d’air par jour, buvant 0,4 L d’eau du robinet (à l’exclusion des boissons renfermant de l’eau du robinet) par jour et ingérant 65 mg de sol par jour (EHD, 1997).

4 Par hypothèse, pesant 59,7 kg, respirant 15,8 m³ d’air par jour, buvant 0,4 L d’eau du robinet (à l’exclusion des boissons renfermant de l’eau du robinet) par jour et ingérant 30 mg de sol par jour (EHD, 1997).

5 Par hypothèse, pesant 70,7 kg, respirant 16,2 m³ d’air par jour, buvant 0,4 L d’eau du robinet (à l’exclusion des boissons renfermant de l’eau du robinet) par jour et ingérant 30 mg de sol par jour (EHD, 1997).

6 Par hypothèse, pesant 70,6 kg, respirant 14,3 m³ d’air par jour, buvant 0,4 L d’eau du robinet (à l’exclusion des boissons renfermant de l’eau du robinet) par jour et ingérant 30 mg de sol par jour (EHD, 1997).

7 Comme on n’a pas trouvé de données convenables sur les concentrations de fond du phénol dans l’air ambiant au Canada, ces valeurs se fondent sur une concentration moyenne de phénol dans l’air ambiant de 0,12 µg/m³, signalée dans Jones (1976) pour un emplacement urbain et suburbain des États-Unis. Comme on n’a retrouvé aucune donnée convenable sur les concentrations dans l’air intérieur en Amérique du Nord, on a posé que ces concentrations étaient identiques aux concentrations dans l’air ambiant (extérieur).

8 D’après une étude de Sithole et Williams (1986), qui n’ont pas réussi à déceler le phénol à la limite de dosage de 0,004 µg/L dans 120 échantillons d’eau traitée par des stations d’un bout à l’autre du Canada (on a calculé la gamme des doses estimatives en posant comme hypothèse des concentrations de phénol de 0 à 0,004 µg/L [la plus petite concentration dosable]).

9 D’après la limite de détection de 0,1 mg/kg, selon une étude limitée, de Golder Associates (1987), dans laquelle on n’a pas décelé de phénol dans les sols de zones résidentielles et de forêts-parcs de l’Ontario éloignées des sources ponctuelles (on a calculé la gamme des doses estimatives en posant comme hypothèse des concentrations de phénol de 0 à 0,1 mg/kg [la limite de détection]).

10 D’après les concentrations de phénol signalées dans 33 échantillons composites d’aliments réunis dans une étude du panier à épicerie, à Windsor (Ontario), en janvier 1992 (ETL, 1992) et d’après la consommation journalière moyenne du groupe d’aliments pour chaque groupe d’âge (NHW, 1977). Dans l’étude, le phénol était présent dans le porc salaisonné (0,13 µg/g), les abats (0,81 µg/g), les viandes froides (0,08 µg/g), les saucisses de Francfort en conserve (0,32 µg/g), les graisses de cuisson, les huiles à salade et la margarine (0,073 µg/g), le thé et le café (0,014 µg/g) et les boissons alcooliques (0,13 µg/g). On ne l’a pas décelé (limite de détection : 0,005 µg/g dans les solides et 0,000 5 µg/g dans les liquides) dans le lait, la crème et le yaourt, dans le fromage et le beurre, dans les produits du bœuf, dans le porc frais, dans les produits de l’agneau, dans le poulet et la dinde, dans les œufs, dans le poisson de mer et d’eau douce, frais et congelé, dans le poisson en conserve, dans les mollusques et crustacés, dans les soupes à la viande en conserve, aux légumes en conserve, et déshydratée, dans le pain, les petits pains et les biscuits, dans la farine, les gâteaux, les biscuits et les brioches ainsi que les beignes, les muffins, les crêpes, les craquelins et la pizza, les céréales à déjeuner, les tartes, les pâtes alimentaires, les légumes-racines, les autres légumes, les fruits frais, congelés et déshydratés, le jus de fruits en conserve et en bouteille, les arachides et le beurre d’arachide, le sucre et les confitures ainsi que les boissons gazeuses. On a calculé la gamme des doses estimatives en posant comme hypothèse des concentrations non décelables nulles (bas de la gamme) et égales à la limite de détection (haut de la gamme). Comme aucune donnée n’a été trouvée...
sur les concentrations de phénol dans le lait maternel, on a posé comme hypothèse que les nourrissons consommaient des aliments de table.

D’après la gamme des teneurs en phénol dans la fumée principale (9 à 161 mg par cigarette) signalée dans ATSDR (1989) et une consommation de 20 cigarettes par jour, la moyenne approximative de cigarettes fumées par les fumeurs réguliers au Canada de 15 ans et plus, en 1995 (Kaiserman, 1997).

TABLEAU 7

Évaluation de la pire dose journalière de phénol atmosphérique inhalée par les populations vivant à proximité des sources ponctuelles au Canada

<table>
<thead>
<tr>
<th>Données utilisées</th>
<th>Dose journalière estimative de phénol (µg/kg de m.c./j)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0-0,5 ans³</td>
</tr>
<tr>
<td>Concentration mesurée*</td>
<td>16</td>
</tr>
<tr>
<td>Selon le modèle de dispersion*</td>
<td>40</td>
</tr>
</tbody>
</table>

1. Par hypothèse, pesant 7,6 kg et inhalant 2,1 m³ d’air par jour (EHD, 1997).
2. Par hypothèse, pesant 15,6 kg et inhalant 9,3 m³ d’air par jour (EHD, 1997).
3. Par hypothèse, pesant 31,2 kg et inhalant 14,5 m³ d’air par jour (EHD, 1997).
4. Par hypothèse, pesant 59,7 kg et inhalant 15,8 m³ d’air par jour (EHD, 1997).
5. Par hypothèse, pesant 70,7 kg et inhalant 16,2 m³ d’air par jour (EHD, 1997).
6. Par hypothèse, pesant 70,6 kg et inhalant 14,3 m³ d’air par jour (EHD, 1997).
7. D’après la partie supérieure de la gamme des concentrations mesurées de phénol dans des études limitées et à très court terme de l’air ambiant à proximité d’usines industrielles (de traitement du bois, de fabrication de résines à base de phénol-formol et d’une huilerie de colza) de l’Alberta et de l’Ontario, qui variaient de non décelable à 57 µg/m³ (Strosher, 1982; De Brou et Bell, 1987; De Brou et Ng, 1989; De Brou, 1990). Faute de données sur les concentrations de phénol dans l’air intérieur des locaux où vivaient ces populations, on a posé que la concentration dans l’air intérieur était la même que dans l’air ambiant (extérieur).
8. D’après la concentration maximale sur 24 h de phénol (145 µg/m³) prédite par les modèles de dispersion dans l’atmosphère, pour l’usine qui est la première source de rejets de phénol dans l’atmosphère au Canada (Davis, 1997). Faute de données sur les concentrations de phénol dans l’air intérieur près de cet emplacement, on a posé que la concentration dans l’air intérieur était la même que dans l’air ambiant (extérieur). On possède également des données limitées sur les concentrations de phénol dans le sol de cet emplacement, mais l’exposition estimative attribuable à ce milieu est négligeable comparativement à l’exposition par l’atmosphère. Il n’en est donc pas tenu compte dans les estimations ci-dessus.
Les estimations se sont généralement fondées sur l’hypothèse selon laquelle le produit est utilisé à la dose maximale recommandée sur l’emballage. On estime ainsi l’absorption journalière à 4 µg/kg de m.c. dans le cas d’un onguent médicamenté pour les lèvres, à 29 et à 81 µg/kg de m.c. pour deux marques d’onguent, à 3 400 µg/kg de m.c. dans le cas de pastilles pour soulager les maux de gorge et à 3 300 µg/kg de m.c., dans le cas d’un aérosol servant au même usage. À noter que les produits pour lesquels l’absorption estimée (les pastilles et les aérosols contre les maux de gorge) ne sont prévues que pour des utilisations occasionnelles à court terme. L’absorption journalière moyenne du phénol dû au tabagisme est également élevée, d’après les estimations, variant de 2,5 à 46 µg/kg de m.c., selon la teneur en phénol dans la fumée principale (tableau 6). Ces estimations ont porté uniquement sur un sous-ensemble de produits auxquels le public peut être exposé au phénol, mais elles servent à confirmer que l’absorption due à certains produits peut être considérablement plus importante que celle qui fait suite à l’exposition par divers milieux naturels.

Outre le phénol exogène produit dans les milieux naturels et auquel sont exposés les humains, du phénol est également produit dans le métabolisme de la tyrosine par les bactéries de l’appareil digestif. Cette production est proportionnelle à la quantité consommée de la protéine et elle se situe dans la gamme de 1 à 10 mg/j.

3.3.2 Caractérisation du danger

Les données épidémiologiques disponibles sont considérées comme insuffisantes pour servir de base à l’évaluation des effets non néoplasiques et de la cancérogénicité chez les humains, par suite des incohérences constatées dans les conclusions des études disponibles, de l’absence de données quantitatives de surveillance des populations étudiées et/ou de l’exposition concomitante à d’autres substances.

Chez les animaux de laboratoire, le phénol exercie une toxicité aiguë modérée, après ingestion. En raison de son absorption rapide au travers de la peau, les DL₅₀ par voie dermique sont semblables à celles de l’exposition par voie orale. Après exposition par voies orale et cutanée à des doses d’une toxicité aiguë de phénol, on a observé la nécrose de la peau ou des muqueuses de la gorge, des tremblements et des convulsions neuromusculaires ainsi que des effets histopathologiques sur le rein, le foie, la rate et le thymus. On a aussi signalé des cas d’arythmie cardiaque. Le phénol a un pouvoir irritant sur la peau, les yeux et le système respiratoire, mais il ne sensibilise pas la peau.

Les effets observés à la faveur du peu d’études accessibles de la toxicité due à des doses répétées après exposition subchronique et à court terme par ingestion se limitent principalement à la réduction du gain pondéral (souvent associée à une diminution de la consommation d’eau), à des effets histopathologiques sur le rein, le foie et le thymus et à la nécrose du myocarde. On a aussi signalé des effets hématologiques, la suppression de la réaction immunitaire et des manifestations neurologiques, par exemple l’inhibition de la réaction de la pupille, des transformations biochimiques dans le cerveau et des modifications du comportement.

Même si le phénol donne une réaction surtout négative au test de mutagénicité sur les bactéries, il provoque des mutations génétiques et des aberrations chromosomiques chez les cellules de mammifères in vitro. Si les résultats des études accessibles sont mitigés, le phénol, au cours d’études dont le plan d’expérience était optimal, a provoqué l’apparition de micronoyaux dans la moelle osseuse de souris exposées in vivo. D’après les données disponibles, il est donc considéré comme un faible clastogène in vivo.

Selon les données existantes, peu nombreuses cependant, il se peut que le phénol soit, au pis, un cancérogène faible, vu l’absence de preuve évidente de sa cancérogénicité chez le
TABLEAU 8 Doses journalières estimatives de phénol attribuables à certains produits de consommation

<table>
<thead>
<tr>
<th>Produit (teneur en phénol)</th>
<th>Dose journalière estimative de phénol</th>
<th>Hypothèses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Onguent médicamente pour les lèvres (0,5 % en poids ou 5 mg de phénol/g d’onguent) — pour traiter les lèvres très sèches, fissurées, les rhumes, les boutons de fièvre, les lèvres brûlées par le soleil</td>
<td>4 µg/kg de m.c.</td>
<td>- 6 applications par jour (aucune donnée sur l’onguent pour les lèvres, hypothèse de la fréquence maximale d’emploi signalée pour le bâton à lèvres; ECETOC, 1994) - 0,01 g par application (quantité typique signalée à l’égard du bâton à lèvres; ECETOC, 1994) - absorption totale (le produit, qu’on laisse en place est probablement ingéré s’il n’est pas absorbé; le phénol traverse facilement la peau; le produit renferme un véhicule huileux qui faciliterait l’absorption) - masse corporelle : 70,7 kg (moyenne des adultes, d’après EHD, 1997)</td>
</tr>
<tr>
<td>Onguent A (0,5 % en poids ou 5 × 10⁻³ mg de phénol/mg d’onguent) — pour le traitement des brûlures, de la peau ébouillantée, des coups de soleil et des irritations mineures de la peau</td>
<td>81 µg/kg de m.c.</td>
<td>- deux applications par jour à la moitié de la surface de l’avant-bras (c’est-à-dire sur 0,057 m² ou 570 cm²) [U.S. EPA, 1996] - quantité ordinaire par application : 1 mg/cm² (valeur signalée par ECETOC, 1994, pour la crème tout usage) - absorption totale (on laisse le produit en place; le phénol traverse facilement la peau; le produit renferme un véhicule huileux qui faciliterait l’absorption; cependant, l’estimation est prudente, ne considérant pas qu’une partie de l’onguent puisse être absorbée par le pansement) - masse corporelle : 70,7 kg (moyenne des adultes, d’après EHD, 1997)</td>
</tr>
<tr>
<td>Onguent B (0,18 % en poids ou 1,8 × 10⁻³ mg de phénol/mg d’onguent) — pour traiter les coupures, les éraflures, les brûlures mineures, les piqûres d’insectes, les écorchements, les gerçures</td>
<td>29 µg/kg de m.c.</td>
<td>- deux applications par jour à la moitié de la surface de l’avant-bras (c’est-à-dire sur 0,057 m² ou 570 cm²) [U.S. EPA, 1996] - quantité ordinaire par application : 1 mg/cm² (valeur signalée par ECETOC, 1994, pour la crème tout usage) - absorption totale (on laisse le produit en place; le phénol traverse facilement la peau; le produit renferme un véhicule huileux qui faciliterait l’absorption; cependant, l’estimation est prudente, ne considérant pas qu’une partie de l’onguent puisse être absorbée par le pansement) - masse corporelle : 70,7 kg (moyenne des adultes, d’après EHD, 1997)</td>
</tr>
<tr>
<td>Pastilles pour la gorge (1,32 % en poids) — pour soulager les maux de gorge et les irritations mineures de la bouche</td>
<td>3 400 µg/kg de m.c.</td>
<td>- 8 pastilles par jour (le maximum recommandé sur l’emballage) - 2,25 g/pastille - absorption totale - masse corporelle : 70,7 kg (moyenne des adultes, d’après EHD, 1997)</td>
</tr>
<tr>
<td>Aérosol pour maux de gorge (1,4 % p/v) — pour soulager les maux de gorge et de bouche</td>
<td>3 300 µg/kg de m.c.</td>
<td>- 3 jets par application, 8 applications par jour (le maximum recommandé sur l’emballage); masse moyenne des 24 jets : 16,76 g, d’après 5 répétitions (écart-type relatif : 3,3 %) - masse volumique : 1 g/mL - hypothèse d’une expiration nulle et d’une absorption totale - masse corporelle : 70,7 kg (moyenne des adultes, d’après EHD, 1997)</td>
</tr>
</tbody>
</table>
rat et la souris, dans une étude ancienne, pendant laquelle on l’a administré à des doses relativement élevées dans l’eau potable, et vu l’observation supplémentaire de son faible pouvoir clastogène in vivo et de son pouvoir presque non cancérogène, bien qu’il soit un promoteur modéré à des doses non toxiques sur la peau de la souris.

Les données disponibles ne suffisent pas à étayer l’évaluation des effets du phénol sur la reproduction ou le développement, après exposition par inhalation. Dans des études bien menées des effets du phénol ingéré sur le développement du rat et de la souris, à des doses toxiques pour les mères, on a observé une réduction de la taille des portées, une augmentation des pertes avant la naissance et de la mortalité périnatale, une baisse du poids moyen des fœtus par litière, la paralysie des membres postérieurs, et une queue courte ou présentant une brusque courbure. On possède des preuves d’effets sur le développement en l’absence de toxicité pour les mères, qui se limitent à une diminution du poids des fœtus chez le rat (Jones-Price et al., 1983a).

3.3.3 Analyses dose/réponse

On ne possède pas de données convenables qui permettraient de caractériser la relation dose/réponse de la cancérogénicité potentielle du phénol, par des études épidémiologiques ou des essais biologiques in vivo.

L’information sur la relation dose/réponse des effets non néoplasiques de l’exposition chronique d’êtres humains au phénol est limitée. On a observé la suppression de la réponse immunitaire et des effets sur les paramètres hématologiques chez un petit nombre d’employés de bureau exposés pendant six mois à un mélange qui contenait du phénol (environ 1,3 mg/m³ d’air) [Baj et al., 1994]. On a aussi observé une augmentation des concentrations d’enzymes hépatiques dans le sérum et des effets sur les paramètres hématologiques dans une étude transversale d’un petit nombre de travailleurs d’une raffinerie exposés à une concentration moyenne pondérée selon le temps de 21 mg/m³ (Shamy et al., 1994). Principalement en raison de la rareté des données ou d’une exposition concomitante à d’autres substances, ces données sont considérées comme ne convenant pas à la caractérisation de la relation dose/réponse. Le reste de la discussion concerne donc principalement l’information acquise à la faveur d’expériences avec des animaux.

Les données disponibles concernant les effets consécutifs à l’inhalation sont considérées comme ne convenant pas à la caractérisation de la relation concentration/réponse. Il n’existe pas non plus d’études récentes dans lesquelles on a examiné une large gamme d’effets (p. ex., cliniques, hématologiques, histopathologiques, dans une large gamme de tissus) après ingestion à court terme ou subchronique de phénol.

Par contraste, la toxicité pour le développement par suite de l’exposition par voie orale a été bien étudiée, et les données sur les relations dose/réponse sont des plus exhaustives à cet égard, bien que les données disponibles ne permettent pas d’évaluer la toxicité pour la fonction de reproduction. Cependant, faute d’observations d’effets à plusieurs doses dans les études des effets sur le développement, on ne saurait trouver de doses de référence valables.

On n’a pas trouvé de données sur les effets toxiques (si ce n’est sur la promotion de tumeurs) après exposition répétée au phénol par voie cutanée.

7 L’étude de la toxicité par inhalation sur deux semaines et du rétablissement sur deux semaines, chez le rat, réalisée par la Chemical Manufacturers Association (l’association des fabricants de produits chimiques) [section 2.4.3.2] n’était pas tout à fait terminée au moment de la réalisation de la présente évaluation du risque sur la santé; il n’en a donc pas été tenu compte dans l’évaluation du danger et des analyses dose/réponse des effets sur la santé humaine.

8 On observe que, au moment de la présente évaluation, la Chemical Manufacturers Association effectuait une étude des effets du phénol (administré par voie orale, dans l’eau potable) sur la fonction de reproduction sur deux générations.
Dans la seule étude où l’on a observé des effets sur le développement en l’absence de toxicité (bien examinée) pour les mères, on a remarqué une réduction notable de la masse corporelle moyenne des fœtus de rats, à la dose journalière de 120 mg/kg (administration dans l’eau, par gavage); la CSENO était de 60 mg/(kg de m.c./j) [Jones-Price et al., 1983a]. Même si on a signalé une baisse significative de la taille des portées dans une étude plus récente dans laquelle on a exposé des rats à une dose journalière moindre (40 mg/kg de m.c., dans l’eau, par gavage) aux journées 6 à 19 de gestation (Narotsky et Kavlock, 1995), la toxicité pour les mères (réduction notable du gain pondéral altération de la fonction de respiration; consommation de nourriture non signalée), non observée à ces faibles doses par d’autres chercheurs, était également évidente.

Dans une étude antérieure, de portée limitée, sur la toxicité de doses répétées, on a observé de « légères » transformations dans le foie et des lésions « légères à modérées » du rein, chez des rats ayant reçu quotidiennement 50 (foie) ou 50 ou 100 (rein) mg de phénol/kg de m.c. (gavage au moyen d’une solution d’eau à 1 %), pendant six mois (Adams, 1944); on n’a pas signalé l’incidence ou la signification statistique de ces lésions. Ces résultats contrastent avec ceux d’études subchroniques et chroniques antérieures, dans le Programme toxicologique national (NCI, 1980) : les seuls effets nocifs alors observés étaient la baisse du gain pondéral chez les rats et les souris à des doses beaucoup plus fortes, même si les effets histopathologiques ont été examinés dans une gamme de tissus : dans une étude des effets subchroniques, CSENO supérieure à 100 et à 200 mg/kg de m.c.; chez la souris et le rat, respectivement; dans une étude des effets chroniques, CM(E)NO chez la souris = 356 mg/(kg de m.c./j) et CSENO chez le rat = 280 mg/(kg de m.c./j). La différence est peu susceptible d’être attribuable à un écart dans le mode d’administration (eau potable dans la dernière étude, par opposition à des doses en boulettes administrées par gavage en solution aqueuse, dans la première), bien qu’elle soit conforme aux données sur le profil des métabolites observés dans une étude toxicocinétique récente, après exposition par gavage à l’eau ou par l’eau potable (Hiser et al., 1994), puisque les doses en boulettes excèdent le niveau de saturabilité du métabolisme. La capacité moindre de conjugaison chez les jeunes rats peut expliquer aussi certaines variations observées des CE chez les sujets d’âges différents. Dans une étude à court terme plus récente, comprenant l’examen histopathologique du foie, du rein, de la rate, du thymus et des adrénales de jeunes rats (exposition débutant à 70 j), on a observé des augmentations non significatives (basées sur l’examen de huit rats seulement par groupe) des transformations histopathologiques du rein à la dose maximale administrée par gavage dans l’eau à laquelle des animaux ont survécu (CMEO = 40 mg/(kg de m.c./j); CSENO = 12 mg/(kg de m.c./j) [Berman et al., 1995].

Même si l’incidence de la nécrose du thymus aux doses de 0, 4, 12 et 40 mg/(kg de m.c./j) était respectivement de 0/8, 0/8, 1/8 et 2/8, respectivement. En raison de la petite taille des groupes, la CSENO est équivoque, mais on pourrait la considérer comme égale à 12 mg/(kg de m.c./j).

9 L’incidence de la nécrose du thymus aux doses de 0, 4, 12 et 40 mg/(kg de m.c./j) était respectivement de 0/8, 0/8, 1/8 et 2/8, respectivement. En raison de la petite taille des groupes, la CSENO est équivoque, mais on pourrait la considérer comme égale à 12 mg/(kg de m.c./j).

10 Fait intéressant, dans une autre étude des mêmes auteurs sur la même souche de souris (Hsieh et al., 1988), le benzène, dont le phénol est un métabolite important, a supprimé la réponse immunitaire à partir de la dose de 6,2 mg/(kg de m.c./j); même s’il n’y avait pas de lésion macroscopique ni de variation du poids de la rate ou du thymus jusqu’à la dose de 33,6 mg/(kg de m.c./j), on n’a pas effectué d’examen histopathologique". Il est
également digne d’intérêt que l’on ait observé la suppression de la réponse immunitaire dans une étude d’un petit nombre de travailleurs exposés pendant six mois au phénol de même qu’au formaldéhyde et peut-être à d’autres produits chimiques émis par le KsylamitMD (utilisé pour la protection des plaques de feutre à l’intérieur des immeubles dans lesquels ils travaillaient) [Baj et al., 1994].

De même, bien que le phénomène n’ait pas été bien examiné, on a observé des effets neurobiochimiques et comportementaux à des doses du même intervalle, la CSEO pour les effets comportementaux étant de 12 mg/(kg de m.c./j) dans une étude effectuée pendant deux semaines sur le rat (Moser et al., 1995). L’importance toxicologique des effets hémato logiques (Sudakova et Nosova, 1981; Hsieh et al., 1992) et neurobiologiques (Hsieh et al., 1992) incohérents observés aux faibles doses est inconnue.

Par conséquent, on a calculé une DA, fondée sur la division de la CE par des coefficients d’incertitude reconnaissant que la relation dose/réponse a été le mieux caractérisée pour la toxicité à l’égard du développement, mais tenant compte du peu de données disponibles sur d’autres paramètres de mesure. On recommande cependant de réexaminer cette valeur lorsque l’on aura terminé les études plus détaillées, actuellement en cours, sur la toxicité de doses répétées par inhalation et d’autres études de la fonction de reproduction sur plusieurs générations. Les NO(A)EL correspondant aux effets histopathologiques sur le rein sont au moins égales à 12 mg/(kg de m.c./j). De fait, cette valeur peut être considérée comme prudente, puisque seules des augmentations non significatives des effets histopathologiques sur le rein ont été observées à la dose immédiatement supérieure (trois fois plus élevée), même si les groupes d’animaux dans l’étude critique étaient de petite taille (n = 8). En dépit de rapports signalant des effets immunologiques à des concentrations semblables ou inférieures (Hsieh et al., 1992), il a été considéré comme prématuré d’utiliser alors cette donnée non confirmée comme base de la mise au point d’une mesure de la relation dose/réponse, faute de connaître l’influence du stress sur l’apparition des réactions observées et vu l’importance clinique contestable des effets observés. À la lumière de cela, on a calculé comme suit la DA :

\[
DA = \frac{12 \text{ mg/(kg de m.c./j)}}{100} = 0,12 \text{ mg/(kg de m.c./j)} \text{ ou } 120 \mu\text{g/(kg de m.c./j)}
\]

où :
- 12 mg/(kg de m.c./j) est la CSENO correspondant aux effets histopathologiques observés sur le rein dans les études disponibles, dont le plan d’expérience était convenable bien que suboptimal (c’est-à-dire groupe de petites tailles) [Berman et al., 1995]; cette valeur est inférieure aux CSEO déterminées pour la toxicité pour le développement, dont la relation dose/réponse est relativement bien caractérisée, et inférieure aux CSEO d’études à plus long terme de la toxicité attributable à des doses répétées;
- 100 est le facteur d’incertitude (10 × 10 pour la variation intraspécifique et variation interspécifique respectivement). On a considéré que les données disponibles ne convenaient pas pour remplacer les éléments des coefficients d’incertitude implicites des variations interspécifiques et intraspécifiques par des valeurs tirées des données; cependant, si l’hydroquinone est le métabolite actif (bien que cela n’ait pas été établi avec certitude), l’être humain est susceptible d’être moins sensible que le rat, vu la production environ 20 fois moindre de ce composé chez cet animal que chez l’être humain.

La DA est aussi considérée comme une valeur prudente, compte tenu du fait que le niveau correspondant à l’effet critique se fonde sur une étude dans laquelle le phénol a été administré par gavage à une dose sous forme de boulettes dans la gamme de saturabilité du métabolisme. En outre, à la CMO on n’a observé qu’une augmentation non significative des effets histopathologiques sur...
le rein; la CMO était environ trois fois plus élevée que la CSENO sur laquelle se fondait la DA. Vu le degré de prudence rattaché à la DA, on n’a intégré dans le facteur d’incertitude aucun terme supplémentaire, pour tenir compte de l’absence d’étude convenable des effets sur la fonction de reproduction. À noter également qu’une DA fondée sur la CMO, de l’étude critique, serait semblable à celle qui est présentée ici, si elle était divisée par le coefficient convenable d’incertitude (tel que 500).

Vu le peu de données disponibles sur les effets consécutifs à l’inhalation, que l’on considère comme insuffisantes pour une caractérisation significative de la relation concentration/réponse et reconnaissant le fait qu’une étude de la toxicité et du rétablissement sur une durée de deux semaines soit en préparation, on n’a pas élaboré de CA pour l’inhalation. À noter cependant qu’une étude toxicocinétique récente montre que le profil des métabolites était semblable après exposition à des doses semblables (en mg/kg de m.c./j) administrées soit par inhalation, soit par voie orale à la dose d’une boulette dans l’eau pendant 1 ou 8 jours (Hiser et al., 1994).

3.3.4 Caractérisation du risque pour la santé humaine

Dans les divers groupes d’âge de la population canadienne, la dose journalière totale de phénol attribuable à tous les milieux se situe, estime-t-on dans la fourchette de 0,06 à 0,71 µg/kg de m.c., ce qui est de 169 à 2 000 fois moins que la DA calculée dans le paragraphe précédent. D’après la concentration mesurée maximale de phénol dans l’air près des sources ponctuelles au Canada, l’exposition journalière totale des sous-groupes vivant à proximité de sources ponctuelles varie, estimate-t-on, de 12 à 34 µg/kg de m.c., ce qui est de 3,5 à 10 fois moins que la DA calculée dans le paragraphe précédent. D’après la concentration estimative maximale sur 24 h calculée par le modèle de dispersion dans l’air du phénol rejeté par la première source canadienne, les pires doses estimatives varient de 29 à 86 µg/(kg de m.c./j), ce qui se rapproche de la DA de 120 µg/(kg de m.c./j). Cependant, d’après les prévisions, ces concentrations si élevées de phénol ne devraient être observées que rarement (0,1 % du temps) et uniquement à proximité de la cheminée et sur la toiture de l’usine (les concentrations prévues diminuent considérablement quand on s’éloigne de la cheminée). Les populations vivant à proximité ne sont donc pas susceptibles d’être exposées à des concentrations aussi fortes que celles que l’on prévoit à proximité immédiate de l’usine, et on considère comme peu probable que, dans cette situation, l’exposition s’approchera de la DA.

3.3.5 Incertitudes et degré de confiance liés à la caractérisation du risque pour la santé humaine

Les estimations de la dose de phénol dans la nourriture, principale voie vraisemblable d’exposition, sont affectées d’un degré élevé d’incertitude, en raison des limites relativement élevées de détection dans l’étude qui, au Canada, a servi à estimer cette forme d’exposition. Cette insensibilité des analyses n’a peut-être pas permis de déceler le phénol dans la majorité des échantillons composites de nourriture analysés au cours de l’étude. Ce degré d’incertitude a été quantifié par calcul des doses posées comme nulles ou égales à la limite de détection, dans le cas des aliments où n’a pas décelé de phénol. Les doses qui en résultent s’étalent donc sur un ordre complet de grandeur dans certaines classes d’âge.

Un fort degré d’incertitude touche aussi les estimations de la dose dans l’air ambiant. Comme le phénol n’a pas été dosé de façon précise dans les études canadiennes accessibles de l’air ambiant éloigné des sources ponctuelles, les doses estimatives d’origine atmosphérique auxquelles la population en général était exposée se fondaient sur des données collectées en 1974, dans un seul emplacement urbain et suburbain des États-Unis. On possède des données plus récentes sur les concentrations de phénol à proximité des sources ponctuelles au Canada, mais les études accessibles sont d’une portée très limitée. Elles ont toutes été réalisées sur de très courtes périodes, dans la plupart des cas en des endroits peu...
nombreux et souvent presque sans précision sur l’emplacement du poste de surveillance par rapport à l’habitat humain local. De plus, un certain nombre d’études a été réalisé sous le vent des sources. Il est également évident, d’après ces études, que les concentrations à proximité des sources ponctuelles varient considérablement, selon le type et l’emplacement de la source. En outre, les estimations à proximité de la principale source se fondaient sur la modélisation de la dispersion du composé dans l’air (qui traite superficiellement les transformations chimiques et qui pose que le phénol se trouve à l’état d’aérosol) et sur un débit maximal d’émission, plutôt que sur les données réelles de la surveillance. C’est ce qui explique la grande incertitude entourant le degré réel d’exposition des populations près des sources ponctuelles au Canada et la prudence entourant les estimations maximales de la pire dose, c’est-à-dire basées sur les hypothèses qui donneraient les valeurs maximales.

Toutefois, on est assez certain de la contribution négligeable de l’eau potable et du sol à l’exposition totale au phénol. D’après des études approfondies de l’eau potable et des études plus limitées des sols de régions non contaminées, même les doses maximales estimatives attribuables à ces milieux et calculées à partir de l’hypothèse que le phénol était présent aux limites de détection dans les échantillons dans lesquels il n’a pas été décelé [la vaste majorité des cas]] sont inférieures de quelques ordres de grandeur à celles qui viennent des aliments ou de l’air ambiant.

On se fie donc peu aux estimations de l’exposition de la population, principalement parce que l’on ne possède pas de données actuelles et représentatives de la surveillance du phénol dans la nourriture — la principale source, vraisemblablement, d’exposition de la population générale au Canada —, dans l’air ambiant extérieur ainsi qu’à proximité d’une gamme de sources ponctuelles.

Le degré de confiance dans la base de données toxicologiques qui servent au calcul de la DA est de faible à modéré. Les données de l’épidémiologie humaine sont insuffisantes. Il n’existe pas non plus d’études toxicologiques récentes de l’effet de doses répétées chez les animaux chez qui on a bien caractérisé, selon les normes courantes, une gamme de paramètres, à l’exception de la toxicité sur le développement, étudiée à la faveur d’études rigoureusement menées chez les rats et les souris. En outre, il s’ajoute une incertitude, due aux rapports selon lesquels, après une exposition à court terme au phénol à des doses inférieures à la CS(E)NO, dont dérive la DA, il y a eu suppression de la réponse immunitaire ou des transformations hématologiques chez les souris ou les cobayes, et des effets neurobiologiques chez les rats (bien qu’il s’agisse de rapports isolés et que les effets soient d’une signification toxicologique inconnue). En outre, on possède des données tout à fait limitées sur les effets sur la fonction de reproduction.

3.4 Conclusions

LCPE, 11a) : D’après les données disponibles, on conclut que le phénol ne pénètre pas dans l’environnement en une quantité ou une concentration ou dans des conditions de nature à avoir, immédiatement ou à long terme, un effet nocif sur l’environnement. En conséquence, le phénol n’est pas considéré comme « toxique » du sens de l’alinéa 11a) de la LCPE.

11 À noter qu’une étude sur la toxicité par inhalation sur deux semaines et du rétablissement sur deux semaines, et une étude sur la fonction de reproduction sur deux générations par exposition par voie orale (eau potable) réalisées pour la Chemical Manufacturers Association étaient encore à venir au moment de la présente évaluation du risque sur la santé. Lorsqu’on en possèdera les résultats, on devrait les évaluer quant à leurs répercussions sur la désignation de « toxique », mais en fonction d’autres priorités, pour l’évaluation aux termes de la LCPE.

12 À noter que, au moment de la présente évaluation, la Chemical Manufacturers Association effectuait une étude des effets du phénol (administré par voie orale, dans l’eau potable) sur la fonction de reproduction sur deux générations.
LCPE, 11b) : D’après les données disponibles, on conclut que le phénol ne pénètre pas dans l’environnement en une quantité ou une concentration ou dans des conditions à mettre en danger l’environnement essentiel pour la vie humaine. En conséquence, le phénol n’est pas considéré comme « toxique » du sens de l’alinéa 11b) de la LCPE.

LCPE, 11c) : D’après les données disponibles, on conclut que la population canadienne en général n’est pas exposée au phénol en une quantité ou une concentration de nature à constituer un danger au Canada pour la vie ou la santé humaine. En conséquence, le phénol n’est pas considéré comme « toxique » au sens de l’alinéa 11c) de la LCPE.

Conclusion générale : À partir d’une évaluation critique des données pertinentes, on ne considère pas le phénol comme « toxique » au sens de l’article 11 de la LCPE.

3.5 Considérations relatives au suivi (mesures à prendre)

Puisque le phénol n’est pas considéré comme « toxique » au sens de l’article 11 de la LCPE, l’évaluation des options, sous le régime de cette loi, pour réduire l’exposition, n’est pas considérée comme prioritaire pour le moment. Cependant, cette conclusion se fonde sur les modes d'utilisation actuels; les rejets de ce composé pourraient continuer cependant à être surveillés pour faire en sorte que l’exposition ne s’accroisse pas de façon significative.

Les données disponibles montrent que les rejets de phénol dans l’environnement au Canada sont maximaux dans les secteurs des pâtes et papiers et des produits du bois, des minéraux (non métalliques), de la chimie, de l’acier et des métaux ainsi que du raffinage et des produits pétroliers (tableau 2).
4.0 BIBLIOGRAPHIE

Environnement Canada. 1997b. Résultats des enquêtes industrielles effectuées sous le régime de l’article 16 de la LCPE concernant la deuxième liste des substances d’intérêt prioritaire et le di (2-éthylhexyl) phthalate, Section des méthodes d’utilisation, Direction de l’évaluation des produits chimiques commerciaux, Hull (Québec).

Key, P.B. 1981. The lethal and sublethal effects of chlorine, phenol, and combined chlorine–phenol exposure on the common mud crab Panopeus herbstii, with an emphasis on uptake/depuration rate kinetics. Université de la Caroline du Sud, Columbia (Caroline du Sud).

Smith, S., V.J. Furay, P.J. Layiwola et J.A. Menezes-Filho. 1994. « Evaluation of the toxicity and quantitative structure–activity relationships (QSAR) of chlorophenols to the copepodid stage of a marine copepod (Tisbe battagliai) and two species of benthic flatfish, the flounder (Platichthys flesus) and sole (Solea solea). » Chemosphere 28: 825–836.

Évaluation sur l’environnement

Évaluation sur la santé
