
Project Document No.:	Revision:	Date:	GBS Area	Comp/Cell/Ext
Project 67 – CRI	0	14-Mar-2014		
Temporary Dock Installation Report				

Document Number / rev:	67 – CRI Deception Bay
------------------------	------------------------

MCKEIL MARINE TEMPORARY DOCK INSTALLATION REPORT

Project Document No.:	Revision:	Date:	GBS Area	Comp/Cell/Ext
Project 67 – CRI	0	14-Mar-2014		
Temporary Dock Installation Report				

to verify the current version prior to use.

Table of Contents

1	PURPOSE & INTRODUCTION	3
2	AMHERSTBURG, ON	3
	COURTRIGHT, ON	
4	SARNIA, ON	4
	WOLFE ISLAND/KINGSTON, ON	
6	SARNIA, ON	
7	MONT- LOUIS, QC	5
	CONCLUSIONS	
_	APPENDIX	_

Revision Details

Rev.	Location of Change	Brief description of Change

Project Document No.:	Revision:	Date:	GBS Area	Comp/Cell/Ext
Project 67 – CRI	0	14-Mar-2014		
Temporary Dock Installation Report				

1 PURPOSE & INTRODUCTION

This document will highlight, by example, the experience McKeil Marine has with designing and installing temporary dock structures.

Over the years, McKeil has been approached by several Customers to propose and subsequently execute the installation of various types of dock structures in order to accommodate the loading of liquid, and project cargos.

In some circumstances the structures/docks are mobilized for a one-time use. This is typically for oversize project cargo that cannot be economically transported over-road from an existing Port. We have been very successful in developing cost-saving measures for our Clients by developing a solution to off-load a barge much closer to the final location for the cargo.

In other cases, while still temporary from a permit perspective, we have provided solutions for year over year service. The benefits for this type of dock can been realized on several fold;

- Expedited permit process
- Minimal environmental impact
- Rapid mobilization and installation
- Lower capital costs
- Little to no remedial work on de-mob

This option often allows our Customers to "rent" an asset as opposed to the burden of an outright purchase or construction of a permanent facility. With our access to various types and sizes of marine plant, in-house and subcontract Naval Archs and Engineers and vast experience in this type of work, McKeil has a proven track record of successful planning, installation and maintenance of temporary docks.

The following will detail the most recent projects we have completed and the challenges over-come.

2 AMHERSTBURG, ON

Located on the lower Detroit River, Amherstburg was the site of one of our longer term docks. The existing site had (3) dolphins piers but they were essentially unusable for larger marine assets due to water depth limitations. General Chemical was realizing an increase in product demand and we were asked to add additional, larger vessels to their contracted service. In order to meet this demand, McKeil Marine had to develop a solution for mooring and loading vessels in deeper water.

The solution was (2) spacer barges. The inshore barge was fitted with spuds and the offshore barge was secured with wire and anchor chain to the interior barge and shore. We also installed several on-shore mooring for both the vessel and ship. The final dock proved successful for the berthing and loading of a 440 ft tanker in all wind and ice conditions. This facility was in service (year-round and in various arrgt's) from the mid-90's until 2004.

Project Document No.:	Revision:	Date:	GBS Area	Comp/Cell/Ext
Project 67 – CRI	0	14-Mar-2014		
Temporary Dock Installation Report				

3 COURTRIGHT, ON

As General Chemical grew in Southern Ontario their requirements for tank storage of liquid calcium grew. In 2002 they identified a tank facility in Courtright, ON. The site they wanted to further develop for their business with Pollard Trucking was approx 2 miles from the St Clair River. McKeil was asked to survey several locations and come up with a proposal for a long-term temporary dock and pipeline. We looked at a few existing docks but determined that due to scheduling conflicts, they would not work. The ideal situation for Pollard was to have their own facility. Over the fall and winter of 2002/03, McKeil conducted site visits, met with Local, Provincial and Federal Authorities and completed Engineering for a dock.

The final design required the outboard edge of the dock to be approx 190ft from the shoreline. The solution involved the placement of (2) barges. The "Gate Lifter" (30' x 30') was used as an intermediate support for the catwalk and pipeline and the barge "Erie West" (290' x 50') was used as the actual dock. Engineering was completed to analyze the holding power of (6)-32" spuds. Having proved the proposal, spuds and spud wells were fabricated and installed on the barge. The installation of the spudwells required internal stiffening of the side shell as well. Final fit-out included the installation of Nav and work lighting, fendering and a cargo loading pipeline.

McKeil Mobilized the (2) barges as well as a 3rd spud barge to assist with the installation in the summer of 2003. The barge continues to be in operation for Pollard Trucking to date.

4 SARNIA, ON

While the dock discussed above met the longer term requirements of GC and Pollard, McKeil was charged with the responsibility of coming up with a short-term storage and loading facility. The immediate need was to receive cargo by truck, transfer it to a floating storage/docking barge, and then transfer to ship. In Dec 2002, McKeil mobilized the barge "Ocean Hauler" to an old CN Rail dock in Sarnia, ON. The existing facility was not adequate to berth a ship so the "Ocean Hauler' severed both as a dock and storage tank. In addition to docking requirements, McKeil designed and installed a liquid discharge and transfer manifold on shore.

This 4 month winter set-up was crucial for the intermediate needs of our Customer and served them well until the Courtright dock was established.

5 WOLFE ISLAND/KINGSTON, ON

With our JV Partner Mammoet Canada Eastern and our affiliate Company Nadro Marine, McKeil came up with a temporary docking solution to accommodate the loading of windmill sections in Kingston, ON for discharge at a new wind farm on Wolfe Island, ON. The town of Kingston gave a small access in the Port but the location was not set-up to allow loading of large barges. With the need to bridge a 100 ft gap between shallow and deep water, McKeil proposed the use of our jack-up barge "J/U 600".

Project Document No.:	Revision:	Date:	GBS Area	Comp/Cell/Ext
Project 67 – CRI	0	14-Mar-2014		
Temporary Dock Installation Report				

Engineering and design work was completed and the necessary ramps fabricated. We also provided a temporary facility on the island by driving pile and pouring a concrete cap to form a shore abutment for ramps. The dock provided un-interrupted service in 2008 and again in 2009.

6 SARNIA, ON

In an earlier project with Mammoet, McKeil was involved with the transport and off-load of several modules for Suncor for the Genesis project. This project involved bringing in several tanks for their refinery upgrades. The transport barge specified for the project was 240' x 70'. Current in this part of the St Clair River was 3-4 kts.

Suncor had a small ramp structure, but in it's existing state, the barge could not be held on station for roll-off. McKeil mobilized a spud barge to assist with this operation. The spud barge was positioned just downstream of the ramp and was utilized in 2 ways. The transport barge first landed alongside the spudbarge and then rotated on the bow of the spud barge until it was perpendicular to the river. The spud barge was then used as a mooring to hold the bow of the transport barge. Further assist tugs and a series of lines run to excavators were used to hold the stern in position during the roll-off. This arrg't was used on a few occasions in 2004 to deliver the required number of modules.

7 MONT-LOUIS, QC

In early 2011, McKeil was approached by another long term Customer, Bellemare Transport. Bellemare was looking for a cost-effective solution for the transport of modules destined for a power sub-station near Mont-Louis, QC. As the transformers were over-sized, road transport had to be as limited as possible. With no nearby port, they came to us for options.

In addition to the challenge of no dock, the tidal range and shallow water added to the issues. As the job was only for 2 voyages, a very temporary and inexpensive solution was required.

After visiting the site, McKeil proposed an intermediate structure to support (2) sets of ramps. With the water depth considered, a single set was not an option to span the distance between the barge and roadway. A day in advance of the barge arrival, the timber crib support structure was built on the shores of the St Lawrence River. Upon completion of the roll-off it was dismantled and set aside for use on the 2nd voyage.

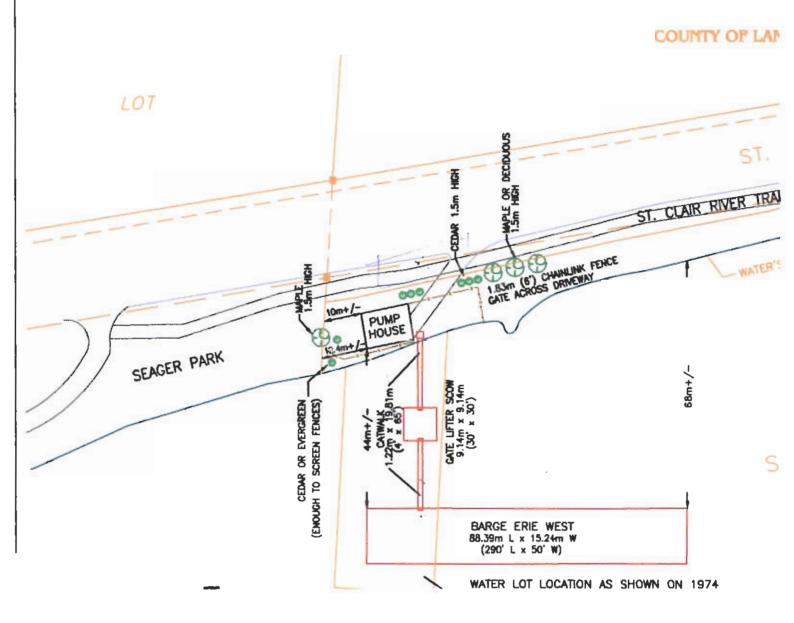
8 CONCLUSION

The preceding examples are only a snapshot of what McKeil has done, and can do for their Customers. While Lake and Liner service Ship Owners have the luxury of well established docks, McKeil, by nature of their Customers, cargos and assets, has to be flexible and adaptive. We have the experience and expertise both in-house and subcontracted to offer turn-key solutions.

Finding the "bridge" between shore and vessel is part of the services we offer.

Project Document No.:	Revision:	Date:	GBS Area	Comp/Cell/Ext
Project 67 – CRI	0	14-Mar-2014		
Temporary Dock Installation Report				

9 APPENDIX


Appendix Number	Appendix Title
1	Capt Ralph Tucker alongside in Amherstburg
2	Courtright Dock Arrg't
3	Barge Alongside Erie West
4	Erie West Spud Arrg't
5	Erie West Docking Study
6	Erie West Spud Dwg
7	Ocean Hauler as Storage Dock
8	Jack-Up 600 Dock
9	Jack-Up 600 Ramp
10	Jack-Up 600 with Ramps Deployed
11	Suncor Dock
12	GC No. 37 Discharge at Mont-Louis

Executive Summary

A study on the proposed anchoring system for the new dock facility at Courtwright, Ontario was conducted by KAM Technology. The proposed dock facility includes a deck barge (Erie West) located at approximately 150' off the shoreline in a north/south direction. The barge will be supported by a number of spuds at the inboard side. Up to 20' of water depth is expected at the inboard side of the barge. Additional mooring lines off the bow and stern will be fitted to further secure the dock.

The study investigated the docking of the vessel Ralph Tucker under various environmental conditions. Results indicate that using 6 spuds of 32" diameter x 1" wall thickness, the dock will withstand the load imposed by the vessel with a bow current of up to 3 knots and wind speed up to 60 knots. As the dock runs parallel to the current, load imposed by the vessel with a side current is highly unlikely; however, the system is still good for a side current of up to 2 knots and wind speed up to 40 knots.

In conclusion, the proposed new dock facility is capable to withstand the dynamic forces resulting from the docking vessel as stated in this report.

Report submitted without prejudice:

Kevin Yik

Member – The Society of Naval Architects and Marine Engineers

Issued	Rev.0	Rev.A	Rev.B				
	D 0	D 4	D D				
Approvals by:	Rev.0	Rev.A	Rev.B				
				Reference	S		
Client/Owner:		<u> </u>		Project/Ve			
	Marine I	Ltd.				ie West t	o serve as
Hamilto	n, Ontari	0					wright, Ontario
Title:							
		En	vironm	ental Fo	rces St	udy	
(Revised)							
Prepared By: Report N			0.	Rev. A	Date:	May 26 2003	
IVANA To all and a TO YOUR			02 D01		Scale:	Nil	
KAM Technology 3 Keholme Cresc. Thorold			92-R01		Job No,	EN03192	
	eholme Creso ario Canada		Total nages	including co	over	Calc. Checked	KY
Olitz	aro Canaua	112 V TC1	Total pages	including C	0 1 01	CHECKEU	1

Wind Loading

(L tons)

 $P = 0.00338 \text{ V}^2 \text{ Ch Cs}$ lb/ft^2

where: Vk = wind velocity in knots

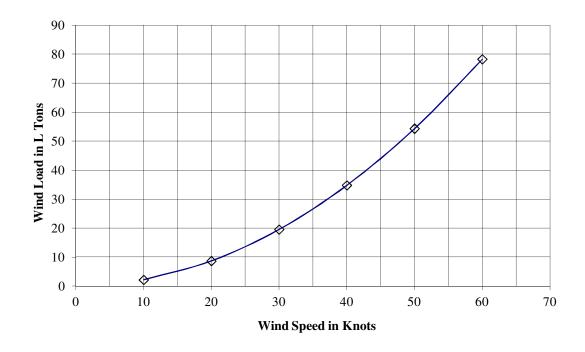
2.17

Ch = height coefficient (1.0)

8.69

Cs = shape coefficient

Vessel's Particulars Length Beam		(ft) 413 60	Cat-walk		(ft^2) 2760 3160	Cs 1.0 1.5	Gross Area 2760 4740
	Depth 31		Main Hull ab. WL		6897	1.0	6897
	B. Draft	14.3					14397
Speed	10	20	30	40	50	60	(knots)
V^2	100	400	900	1600	2500	3600	•
Angle	90	90	90	90	90	90	
Proj Area	14397	14397	14397	14397	14397	14397	
Force(lbs)	4866	19465	43796	77860	121655	175184	


Wind Force

19.55

34.76

54.31

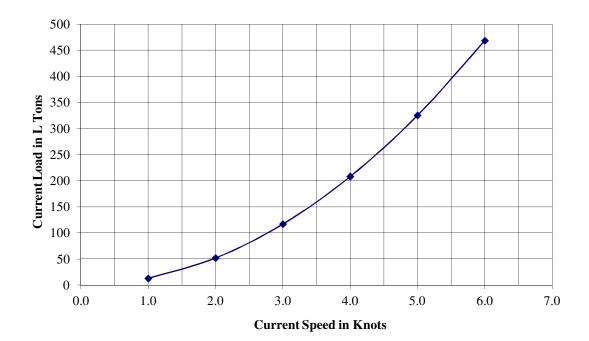
78.21

Current Loading

 $fD = 0.5Cd\rho V^2 A$ (consistent units)

where: fD = drag force per unit length $\rho = mass$ density

Cd = drag coefficient


V = velocity of the current in ft/sec A = projected area per unit length

Vessel's Particulars

(Ralph Tucker)	(ft)		(ft^2)	Cd
Length	413	Underwater Hull	10532	1.0
Beam	60	Mass density ρ	1.94	
Depth	31			
Draft Loac	25.5			

Knots	1.0	2.0	3.0	4.0	5.0	6.0
ft/sec	1.689	3.378	5.067	6.756	8.445	10.134
V^2	2.85	11.41	25.67	45.64	71.32	102.70
Drag force	29142	116569	262279	466274	728553	1049117
(L tons)	13.01	52.04	117.09	208.16	325.25	468.36

Current Force

Combined Forces - Scenario (1)

Vessel parallel to the dock side and drifted by wind and current

Vessel docking speed =0 knotsTotal rubber tires fitted at barge side =10Contact area of each tire87 sq. ft.Tires in contact with vessel (assumed 50%) =5

Limiting pressure on hull = 1230 lbs/sq. ft

Table (1a) - 1 knot current Current force = 13.01 tons

Wind	Wind	Combined	Force per	Deflection	Pressure
Speed	Force	Force	tire (tons)	(inches)	(lbs/ft^2)
10	2.17	15.18	3.04	0.62	78
20	6.69	19.70	3.94	0.80	101
30	19.55	32.56	6.51	1.32	168
40	34.76	47.77	9.55	1.94	246
50	54.31	67.32	13.46	2.74	347
60	78.21	91.22	18.24	3.71	470

Table (1b) - 2 knots current Current force = 52.04 tons

Wind	Wind	Combined	Force per	Deflection	Pressure
Speed	Force	Force	tire (tons)	(inches)	(lbs/ft^2)
10	2.17	54.21	10.84	2.21	279
20	6.69	58.73	11.75	2.39	302
30	19.55	71.59	14.32	2.91	369
40	34.76	86.80	17.36	3.53	447
50	54.31	106.35	21.27	4.33	548
60	78.21	130.25	26.05	5.30	671

Table (1c) - 3 knots current Current force = 117.09 tons

Wind	Wind	Combined	Force per	Deflection	Pressure
Speed	Force	Force	tire (tons)	(inches)	(lbs/ft^2)
10	2.17	119.26	23.85	4.85	614
20	6.69	123.78	24.76	5.04	637
30	19.55	136.64	27.33	5.56	704
40	34.76	151.85	30.37	6.18	782
50	54.31	171.40	34.28	6.97	883
60	78.21	195.30	39.06	7.94	1006

4.31 t/m^2

Combined Forces - Scenario (1) continue

Vessel parallel to the dock side and drifted by wind and current

Vessel docking speed =	0
Total rubber tires fitted at West side =	10
Contact area of each tire	87
Tires in contact with vessel (assumed 50%) =	5
Limiting pressure on hull =	1230

Table (1d) - 4 knot current

Current force = 208.16 tons

Wind	Wind	Combined	Force per	Deflection	Pressure
Speed	Force	Force	tire (tons)	(inches)	(lbs/ft^2)
10	2.17	210.33	42.07	8.56	1083
20	6.69	214.85	42.97	8.74	1106
30	19.55	227.71	45.54	9.26	1173
40	34.76	242.92	48.58	9.88	1251
50	54.31	262.47	52.49	10.68	1352
60	78.21	286.37	57.27	11.65	1475

Table (1e) - 5 knots current

Current force =

325.25 tons

Wind	Wind	Combined	Force per	Deflection	Pressure
Speed	Force	Force	tire (tons)	(inches)	(lbs/ft^2)
10	2.17	327.42	65.48	13.32	1686
20	6.69	331.94	66.39	13.50	1709
30	19.55	344.80	68.96	14.03	1776
40	34.76	360.01	72.00	14.64	1854
50	54.31	379.56	75.91	15.44	1955
60	78.21	403.46	80.69	16.41	2078

Table (1f) - 6 knots current

Current force =

468.36 tons

Wind	Wind	Combined	Force per	Deflection	Pressure
Speed	Force	Force	tire (tons)	(inches)	(lbs/ft^2)
10	2.17	470.53	94.11	17.10	2423
20	6.69	475.05	95.01	17.10	2446
30	19.55	487.91	97.58	17.15	2512
40	34.76	503.12	100.62	17.20	2591
50	54.31	522.67	104.53	17.25	2691
60	78.21	546.57	109.31	17.30	2815

Combined Forces - Scenario (2)

Limiting pressure on hull =

Vessel at 5 degrees to the dock side and drifted by wind and current

Vessel docking speed = 0 knots Total rubber tires fitted at West side = 10 Contact area of each tire 87 sq. ft. Tires in contact with vessel (conservative) = 1 1230 lbs/sq. ft

Current force = 13.01 tons Table (2a) - 1 knot current

Wind	Wind	Combined	Force per	Deflection	Pressure
Speed	Force	Force	tire (tons)	(inches)	(lbs/ft^2)
10	2.17	15.18	15.18	3.09	391
20	6.69	19.70	19.70	4.01	507
30	19.55	32.56	32.56	6.62	838
40	34.76	47.77	47.77	9.72	1230
50	54.31	67.32	67.32	13.69	1733
60	78.21	91.22	91.22	18.55	2349

Table (2b) - 2 knots current Current force = 52.04 tons

Wind	Wind	Combined	Force per	Deflection	Pressure
Speed	Force	Force	tire (tons)	(inches)	(lbs/ft^2)
10	2.17	54.21	54.21	11.03	1396
20	6.69	58.73	58.73	11.95	1512
30	19.55	71.59	71.59	14.56	1843
40	34.76	86.80	86.80	15.80	2235
50	54.31	106.35	106.35	17.00	2738
60	78.21	130.25	130.25	17.30	3354

13.36 t/m^2

Table (2c) - 3 knots current Current force = 117.09 tons

Wind	Wind	Combined	Force per	Deflection	Pressure
Speed	Force	Force	tire (tons)	(inches)	(lbs/ft^2)
10	2.17	119.26	119.26	> 17	3071
20	6.69	123.78	123.78	> 17	3187
30	19.55	136.64	136.64	> 17	3518
40	34.76	151.85	151.85	> 17	3910
50	54.31	171.40	171.40	> 17	4413
60	78.21	195.30	195.30	> 17	5028

Computing Kinetic Docking Energy

Ref: Marine Fendering Systems - Uniroyal, P.6~7

Guideline: Dock Facility - Engineering Report Vol.I, Nov.1, 1974

Formula: $K.E. = 1/2 \times (W/g) V^2$

All loads expressed through out this report are in tons (Long) of 2240 lbs.

Assessment:

	Disp.	Velocity	Gravity	K.E.	<- Total energy of docking vessel
Vessel	Tons (Long)	(ft/sec)	(ft./sec^2)	Ft-Tons	_
A	30000	0.84	32.2	329	_
Ralph Tucker	10100	1.68	32.2	443	<- use this for subsequent calculations

K.E. absorbed by the fender = K.E. ship x Cm x Ce x Cs

Cm = Additiona mass of the vessel caused by the compression of the sea water against the side of the ship when the ship is stopped by the fenders. For the subject dock, less than 50% length of the vessel shall be acting at the jetty. Therefore, Cm = 1.3*.5 = 0.65 is adequate

Ce = eccentricity factor, use 0.50

Cs = Softness factor, use 0.90

Hence, total energy received by the fenders is:

$$443 \times .65 \times 0.50 \times 0.90 = 129.5 \text{ ft-tons}$$

Assume one rubber tire in contact with the vessel (conservative approach)

Refer to Energy Vs Deflection Curve derived from actual test (see appendix)

Deflection of rubber tire fender = 17.1 inches Corresponding load = 110

Contact area of the 140"OD x 60"ID tire is 87 sq. ft
Average pressure (Load/area =) 1.26 Tons/sq. ft
or = 2832 lbs./sq. ft.

Lloyds Pressure Formula for Scantling Design

Formula: $t = 0.00455s(pdHk)^{5}$

where: s = stiffener spacing (mm)

 $pd = 1/C (tonnes/m^3)$

H = height from hopper slope plate to top of cargo

k = higher tensile steel factor (245/yield)

Stress Criteria: (a) Bottom Structure and double hull structure:

Girders $fb = 9.5/k \text{ kg/mm}^2 \text{ (outer hull)}$

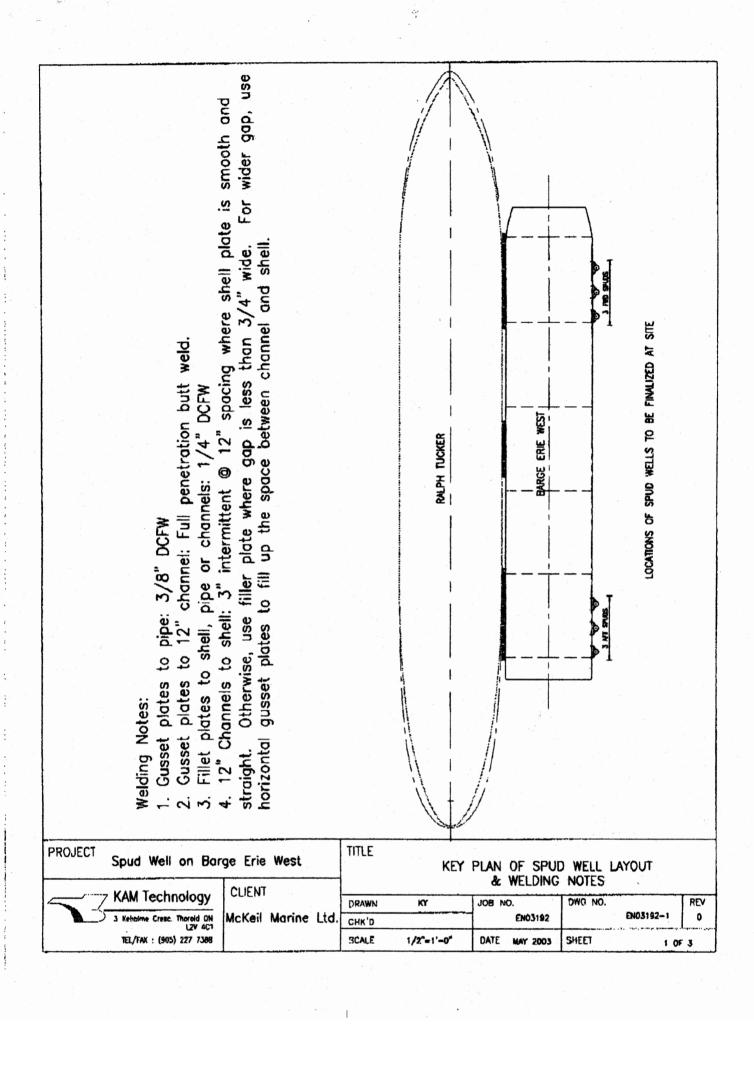
fb = 11.0/k (inner bottom and above)

fv = 8.5/k

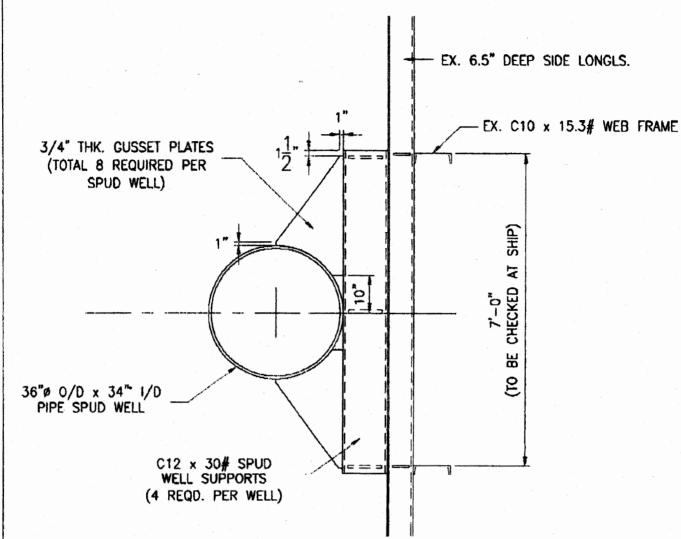
fc = 15.0/k

Floors/wet fb = 12.5/k

fv = 8.5/k


fc = 18.0/k

Buckling Criteria: Static Conditions 1.2


Corrosion Allowance 2 mm internal structure of ballast tanks

1 mm others

							as-fitted
Side plating	S	pd	H	k	ε Load/m^2	(t)	9.5 mm
case 1	483.00	1.00	4.00	1.000	4.00	4.40	
case 2	813.00	1.00	6.00	1.000	6.00	9.06	
case 3	813.00	1.00	8.00	1.000	8.00	10.46	
case 4	813.00	1.00	10.00	1.000	10.00	11.70	
case 5	813.00	1.00	12.00	1.000	12.00	12.81	
	UDL	span	Moment	allowable	Z required		as fitted
Structural Support(tonnes/m)		<i>(m)</i>	$(wl^2/12)$	stress	(cm^3)		211 cm^3
case $1 = 4 \text{ t/m}^2$	1.92	2.00	0.64	13.46	47.55		
case $1 = 6 \text{ t/m}^2$	2.88	2.00	0.96	13.46	71.32		
case $1 = 8 \text{ t/m}^2$	3.84	2.00	1.28	13.46	95.10		
case $1 = 10 \text{ t/m}^2$	4.80	2.00	1.60	13.46	118.87		
case $1 = 12 \text{ t/m}^2$	5.76	2.00	1.92	13.46	142.64		

KAM TECHNOLOGY

PROJECT Spud Well on Bar	SPUD WELL CONSTRUCTION DETAILS PLAN VIEW						
KAM Technology	CLIENT	DRAWN	KY	JOB NO.	DWG NO.		REV
3 Keholme Cresc. Thorold ON LZV 4C1	McKeil Marine Ltd.	CHK'D		EN03192		EN03192-1	0
TEL/FAX : (905) 227 7388		SCALE	1/2=1'-0"	DATE MAY 2003	SHEET	2 OF	3

TITLE

DRAWN

CHK,D

SCALE

KY

1/2"=1'-0"

SPUD WELL CONSTRUCTION DETAILS SECTIONAL VIEW

EN03192

DATE MAY 2003

DWG NO.

SHEET

EN03192-1

٥

3 OF 3

JOB NO.

PROJECT

Spud Well on Barge Erie West

KAM Technology

3 Kehaime Crase, Therold ON L2V 4C1

TEL/FAX : (905) 227 7388

CLIENT

McKeil Marine Ltd.

