

Setting the stage for expanding HIV pre-exposure prophylaxis use in Canada

M Hull^{1,2,*}, DHS Tan³

Abstract

Human immunodeficiency virus (HIV) infection continues to disproportionately affect vulnerable populations in Canada; particularly men who have sex with men (MSM). Novel HIV prevention strategies have recently expanded from the use of non-occupational post-exposure prophylaxis (nPEP) after high risk exposures to the use of pre-exposure prophylaxis (PrEP) in which individuals reduce risk of HIV infection through use of combination antiretrovirals taken prior to risk exposure. With approval of tenofovir/emtricitabine (TDF/FTC) for use as PrEP only in early 2016, and with limited public funding to date, uptake in Canada is in its preliminary stages. These biomedical prevention strategies have proven efficacy for MSM, and they may have potential for other at-risk populations. With generic formulations of TDF/FTC now available in Canada, there is an opportunity for widespread implementation. Expanding knowledge of health care providers across Canada on how best to assess, refer for or prescribe and monitor PrEP will contribute to the current efforts to reach the global goal of eliminating new HIV infections.

Suggested citation: Hull M, Tan DHS. Setting the stage for expanding HIV pre-exposure prophylaxis use in Canada. *Can Commun Dis Rep.* 2017;43(12):272-8. <https://doi.org/10.14745/ccdr.v43i12a05>

Introduction

It has been over 40 years since the HIV epidemic first drew clinical attention, with reports of opportunistic infections and cancers occurring in young, otherwise healthy gay, bisexual and other men who have sex with men (MSM) (1,2). Despite tremendous advances in HIV diagnostics, HIV care and management and three decades of educational campaigns, MSM continue to bear the brunt of the HIV epidemic in Canada (3). MSM in Canada are now 171 times more likely to acquire HIV infection than men in the general population. The bulk of these infections are now concentrated in urban areas where, in cities such as Vancouver and Toronto, MSM consistently constitute approximately 70% of all new HIV diagnoses each year (4). In addition, Canada has witnessed a dramatic rise in new HIV diagnoses amongst Indigenous individuals living in the Prairie provinces, attributed to injection drug use (IDU) and heterosexual transmission (5).

In countries such as England that have begun to roll out biomedical prevention strategies such as pre-exposure prophylaxis (PrEP), there have been substantial decreases in new infections, with most of this experience to date being amongst MSM (6). The evidence of efficacy and the promising results from early uptake of both pre- and post-prophylaxis medication to prevent the transmission of HIV marks an important new opportunity for HIV prevention strategies in Canada.

Context

HIV prevention strategies have traditionally relied on individual level behavioural interventions, such as improved condom use or sexual health counselling, as well as community level interventions to decreasing risk for marginalized populations, such as needle exchange or harm reduction services for those who inject drugs (7). The emergence of improved HIV testing strategies, including assays with shorter window periods or point-of-care delivery, have led to more HIV infections being diagnosed earlier in the course of disease, with the potential to limit onward transmission of the virus. Suppressive antiretroviral therapy (ART) has been shown to prevent the transmission of HIV from an HIV-positive individual to an uninfected sexual partner (8,9). Expansion of ART programs, in combination with harm reduction programming, has significantly reduced HIV infections amongst those who inject drugs in Vancouver's inner city, with a drop in new diagnoses from over 350 in 1996 to below 30 in 2012 (10).

Despite the significant expansion of ART in Canada, sexual transmission prior to diagnosis, particularly amongst MSM individuals experiencing acute seroconversion, contributes to Canada's ongoing epidemic (11-14). There is emerging global consensus that a combination approach that packages current prevention strategies with emerging biomedical prevention interventions offers the best hope of reducing new HIV infections (15). The objective of this article is to describe the PrEP and non-occupational post-exposure prophylaxis (nPEP) treatments, and the challenges and opportunities for these biomedical

Affiliations

¹ BC Centre for Excellence in HIV/AIDS, Vancouver, BC

² University of British Columbia, Vancouver, BC

³ Faculty of Medicine, University of Toronto, Toronto, ON

***Correspondence:** mhull@cfenet.ubc.ca

HIV prevention strategies that have the potential to alter the trajectory of the HIV epidemic in Canada and around the world.

Pre- and post-prophylaxis medication strategies

Use of antiretroviral medications for post-exposure prophylaxis has been the standard of care for several decades for high risk exposures occurring in occupational settings (such as hospitals). Use for non-occupational high risk exposures, such as consensual sexual exposure or needle sharing (nPEP), has been endorsed by guidelines in the United States beginning in 2005 (16), and is now standard of care in most jurisdictions in the developed world. Individuals with potential risk exposure are assessed based on the likelihood the source of the exposure could be HIV-positive and the risk of the nature of the exposure itself. If the source is not known to be HIV-positive, local epidemiology of HIV prevalence amongst at-risk populations, such as MSM or people who inject drugs (PWID), is important to assess risk. High risk exposures would include needle sharing and condomless receptive anal sex; moderate risk exposure includes condomless insertive anal or vaginal sex and condomless receptive vaginal intercourse. Individuals found to have had a high or moderate risk exposure from a source with significant likelihood of being HIV-positive are eligible for nPEP. In this setting, individuals receive a 28-day course of standard combination antiretroviral medications to decrease likelihood of infection. Medications must be started as soon as possible after exposure and no later than 72 hours after exposure (17). Individuals should undergo HIV testing at 12 weeks post-exposure to ensure they remain HIV-negative, and should be offered immediate referral for HIV therapy if found to be HIV-positive.

In contrast, PrEP refers to the daily use of the fixed-dose combination of tenofovir disoproxil fumarate (TDF) and emtricitabine (FTC) in conjunction with ongoing safer sex practices in HIV-negative individuals. Here, therapy is used on an ongoing basis, prior to a potential HIV exposure and continued afterwards to prevent infection. Individuals at potential risk for HIV acquisition should undergo a baseline assessment to ensure they are HIV-negative. Use of a fourth generation HIV assay is recommended for screening due to its reduced window period. Individuals with signs or symptoms of acute HIV infection, or with exposure within the window period (up to 21 days following exposure) of the assay, should be tested with other modalities such as the HIV (RNA) nucleic acid amplification test (NAAT) or be retested 14–21 days later to be sure of an accurate result. Individuals with undiagnosed HIV infection who are started on PrEP may be at risk for development of HIV drug resistance since they do not receive a standard triple antiretroviral regimen. Individuals should be counselled regarding the need for complete adherence to have full protective benefit, and that protective levels are reached after seven days of daily use. PrEP is very well tolerated, with a small risk of gastrointestinal side effects in the first few weeks, and a potential risk of reversible renal and bone toxicity. A meta-analysis of ten placebo-controlled trials has shown that the frequency of adverse events is similar to placebo (OR=1.01, 95%CI=0.99-1.03)(18). Individuals using PrEP undergo regular monitoring every three months with updated HIV testing, renal function testing and screens for sexually transmitted infections. See **Table 1** for a

summary of pre- and post-exposure prophylaxis treatments for HIV.

Table 1: Summary of pre- and post-exposure prophylaxis treatments for HIV

Description	Pre-exposure prophylaxis (PrEP)	Non-occupational post-exposure prophylaxis (nPEP)
Labelled indication	Yes	No
Population	Individual at high risk of HIV exposure through sex or needle sharing	Individual who has experienced a high or moderate risk exposure from an individual at significant risk for having transmissible HIV within the preceding 72 hours
Medications used	Tenofovir DF/ emtricitabine	Variable, but current data support the combination of, 1) tenofovir DF, 2) emtricitabine or lamivudine and 3) either an integrase strand transfer inhibitor (raltegravir or dolutegravir) or a boosted protease inhibitor (darunavir/ ritonavir)
Duration	Indefinite while risk of exposure continues Medication is taken daily	Daily for 28 days
Common side-effects	Nausea, GI upset, small risk of reversible nephrotoxicity and decreases in bone density	Regimen-specific, but may include nausea, GI upset, headache, rare risk of renal or liver toxicity, risk of drug interactions if boosted protease inhibitors are used
Monitoring	Baseline HIV, liver, renal and STI screens Followup testing one month after use and quarterly thereafter	Baseline HIV, liver, renal and STI screens Followup testing at two and four weeks after initiation if symptoms arise or if baseline abnormalities detected HIV testing 12 weeks after exposure

Abbreviations: GI, gastrointestinal; STI, sexually transmitted infections; Tenofovir DF, tenofovir disoproxil fumarate

Evidence for PrEP

Use of TDF/FTC for PrEP in HIV-negative individuals at high ongoing risk of HIV acquisition has been rigorously evaluated in randomized clinical trials and has been found to be highly effective, particularly in MSM (**Table 2**). Daily use has been evaluated in two trials, while the Ipergay trial studied “on-demand” PrEP, where TDF/FTC was used 2–24 hours prior to exposure (loading dose of two tablets) followed by daily use until 48 hours after last sexual exposure (19).

Table 2: Summary of HIV pre-exposure prophylaxis trials in men who have sex with men (MSM)

Study	Inclusion criteria	Intervention	HIV incidence rate (Control arm)	Risk reduction	Number needed to treat per year
iPrEx (20,21)	High risk for HIV: Anal sex with >4 partners UAI with HIV+/ unknown partner Prior STI Transactional Sex	Daily tenofovir/ emtricitabine vs. placebo	3.9/100 person-years (95% CI 3.17 – 4.87)	Intention to treat: 44% (95%CI 15 – 63) On treatment with detectable drug: 92% (95% CI 40 – 99)	Overall: 62 (95% CI 44 – 147) With UAI: 36 With STI: 41
PROUD (22)	UAI last 90 days	Immediate vs. deferred daily tenofovir/ emtricitabine	8.9/100 PY 95% CI 6 – 12.7	Overall: 86%	Overall: 13 (95% CI 9 – 25)
Ipergay (19)	UAI with >2 partners in last 6 months	On-demand tenofovir/ emtricitabine vs. placebo	6.6/100 PY	Overall: 86% (95% CI 40 – 99)	Overall: 18

Abbreviations: CI, confidence interval; HIV, human immunodeficiency virus; PY, person years; STI, sexually transmitted infection; UAI, unprotected anal intercourse

Use of both TDF alone and TDF/FTC has been evaluated for use in preventing HIV transmission amongst heterosexual serodiscordant couples and in other heterosexuals in highly endemic areas (23-26). Findings of these studies are conflicting, with some studies showing protective benefit and others not. This seems to be largely driven by poor adherence to the study drug(s) (26).

Use of TDF alone as PrEP in PWID demonstrated a 48.9% decrease in HIV incidence overall in a study conducted in Bangkok (27). A limitation of that study is that under Thai law, sterile needles could not be provided to study participants, meaning that the incremental benefit of PrEP when a full package of evidence-based prevention strategies for PWID is also implemented remains unknown.

Challenges and opportunities for biomedical prevention

Identifying populations for PrEP

Mathematical modelling studies have clearly shown that PrEP is most cost-effective when given to those at greatest HIV risk (28,29). To date, PrEP scale-up in Canada has focused primarily on MSM because of the availability of clear data on how to identify high-incidence subpopulations and on the feasibility of PrEP implementation. The use of clinical markers, such as antecedent sexually transmitted infection or use of validated risk calculators (30-34) allows for the identification of Canadian MSM with HIV incidence rates well over internationally-recommended thresholds of 2-3% per year (35,36). Awareness of PrEP amongst MSM in urban areas has climbed substantially over the last few years. Recent studies have shown 91.3% of MSM undergoing anonymous HIV testing at a sexual health clinic in Toronto and 80% of MSM engaged in a cohort study in Vancouver were aware of PrEP (37).

Demonstration projects have shown the feasibility of achieving high adherence and 'real-world' implementation data suggest the potential for considerable impact on the HIV epidemic.

Daily use of TDF/FTC eliminated new HIV infections amongst MSM receiving PrEP in a health maintenance organization in San Francisco (38,39). Similarly, use of PrEP as a component of comprehensive HIV services led to a 32% reduction in new diagnoses in clinics providing MSM services in London (6). In New South Wales, Australia, a 40% reduction in recent HIV infections in MSM has been ascribed to increased PrEP use (40).

Use in PWID or settings of heterosexual transmission also has potential, but presents different challenges. For instance it would require real-time integration with surveillance programs to identify communities with active transmission, and practical new strategies will be needed for identifying those who are most at-risk. Integrating biomedical prevention into harm reduction strategies for PWID where clear impact on HIV transmission has already been demonstrated has not yet been evaluated. An intriguing possibility evaluated in the Partner Demonstration Project in Africa is to offer PrEP to HIV-negative partners of newly diagnosed individuals initiating ART, serving as a short-term bridge while viral load suppression is achieved in the HIV-positive partner (41). This strategy may be useful in localized communities with ongoing HIV transmission. Similar implementation science initiatives are needed in Canada to better understand the acceptability, feasibility and real-world health outcomes as PrEP is rolled out in high risk populations.

Expanding access to PrEP

Currently, PrEP is prescribed primarily by specialist physicians, but this practice creates a bottleneck. Expanding access to PrEP could be done through building capacity with primary care providers. Given that primary care providers already offer other evidence-based primary prevention strategies for chronic diseases, PrEP prescribing is a logical extension of this role.

Physician surveys support the concept of primary care as an appropriate setting for PrEP delivery (42). Primary care providers give longitudinal care to large numbers of at-risk, HIV-negative persons and have expertise in other components of HIV prevention, such as counselling, substance use and mental health.

Recent studies in the United States (US) have found that awareness of PrEP amongst primary care providers has grown in the years following publication of clinical guidelines by the US Centers for Disease Control and Prevention (76-93% aware), with 17-34% of those surveyed now prescribing PrEP (43-45). Unlike the United States, Australia and the United Kingdom, which have regularly updated national guidelines for HIV treatment and nPEP, Canada has neither. This is in part because health care is a provincial/territorial jurisdiction. Currently only British Columbia and Quebec have issued clinical guidance for physicians prescribing PrEP (46,47). In British Columbia, there are no provincial restrictions regarding type of physician who can prescribe PrEP, while in Quebec, current guidance suggests PrEP should be prescribed only by physicians who already have experience prescribing antiretroviral therapy.

A lack of overall PrEP knowledge has been identified by physicians as a potential barrier to prescribing (44). Other

barriers that may prevent physician uptake of PrEP could include misperceptions regarding potential side effects of PrEP, concerns regarding risk compensation (the notion that individuals may increase risky behaviour if they believe they are being protected against HIV, and thus may overcome protective benefits) and increased sexually transmitted infections amongst PrEP users. These barriers can be readily addressed (48) or are amenable to screening interventions (49).

Increasing physician education and engaging primary care physicians to either prescribe or refer for PrEP will help to expand the reach of this primary prevention strategy.

What about public reimbursement?

Health Canada authorized the use of TDF/FTC in conjunction with ongoing safer sex practises for HIV prevention only in 2016. Until recently, only Quebec had offered public re-imbursement for PrEP. Elsewhere, individuals wishing to use PrEP had been limited to coverage via private third-party insurance, or through use of so-called "buyers clubs", which promote access via online pharmacies (50). In August 2016, as part of the Common Drug Review process of the Canadian Agency for Drugs and Technology in Health (CADTH), the Canadian Drug Expert Committee (CDEC) provided a formal recommendation to participating Canadian federal, provincial and territorial public drug plans that TDF/FTC be listed on their formularies for a PrEP indication according to the Health Canada indication if the following two conditions were met:

- it is provided in the context of a sexual health program by a prescriber experienced in the treatment and prevention of HIV-1 infection
- the price is reduced (51)

However, the first condition is itself a barrier to expanding PrEP uptake, as it implies that only prescribers experienced in HIV prevention or management should prescribe PrEP.

With the very recent entrance of generic TDF/FTC onto the Canadian market, options for lower drug pricing and expanded access are already in place in some areas. In September 2017, Ontario announced coverage of PrEP via the Ontario Drug Benefit Program, with no restrictions on who might prescribe. British Columbia is currently reviewing PrEP coverage in light of new generic pricing (52).

Next steps

We are entering a new era in HIV elimination efforts with access to biomedical prevention strategies. These strategies have proven effectiveness in MSM who continue to be over-represented in the Canadian HIV epidemic, and may also have a role in decreasing transmission in other at-risk populations.

To realize the full benefits of biomedical prevention, a number of steps are needed. The publication of clinical guidelines would increase health care provider comfort levels with PrEP prescribing. Continuing medical education, summarizing the evidence on PrEP and increasing awareness of the guidelines, will improve health care provider knowledge, and transition PrEP into the repertoire of services offered by primary care providers.

In those provinces where PrEP initially may be provided only by those experienced in the treatment and prevention of HIV-1 infection, other primary care clinicians can still identify at-risk individuals, inform them of PrEP and provide opportunities for referral. PrEP referral could also be integrated into existing STI programs, public health partner notification programs or linking to existing programs that see at-risk individuals presenting for assessment for post exposure prophylaxis. Closer linkage of public health programs and clinical services for HIV prevention and care could also enhance knowledge of and acceptance of PrEP.

Conclusion

Biomedical prevention strategies have the potential to alter the trajectory of the HIV epidemic in Canada and around the world. The successful integration of PrEP into existing HIV screening and prevention practices will undoubtedly contribute to the global goal of eliminating new HIV infections.

Authors' statement

MH and DT jointly conceived and contributed to the writing of this article.

Conflict of interest

MH: has received honoraria for delivering educational lectures of his own design (Gilead, Merck and Janssen) or attending advisory boards from BMS, Gilead, Merck, Janssen and ViiV Healthcare. All monies were paid to his institution.

DT: has received honoraria from ViiV Healthcare and Merck for delivering educational lectures of his own design; DT's institution has received support from Gilead and ViiV Healthcare for investigator-initiated research grants; DT is a site Principal Investigator for clinical trials sponsored by GSK.

References

1. Centers for Disease Control (CDC). Kaposi's sarcoma and Pneumocystis pneumonia among homosexual men--New York City and California. MMWR Morb Mortal Wkly Rep 1981 Jul;30(25):305-8. [PubMed](https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=6789108&dopt=Abstract) (https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=6789108&dopt=Abstract).
2. Centers for Disease Control (CDC). Pneumocystis pneumonia--Los Angeles. MMWR Morb Mortal Wkly Rep 1981 Jun;30(21):250-2. [PubMed](https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=6265753&dopt=Abstract) (https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=6265753&dopt=Abstract).
3. Public Health Agency of Canada. HIV and AIDS in Canada: Surveillance Report to December 31, 2014. Ottawa (ON): Minister of Public Works and Government Services Canada; 2015. <https://www.canada.ca/en/public-health/services/publications/diseases-conditions/hiv-aids-canada-surveillance-report-december-31-2014.html> [Accessed February 1, 2017].

4. BC Centre for Excellence in HIV/AIDS. HIV monitoring quarterly report for Vancouver Coastal Health. Second Quarter 2016. http://www.cfenet.ubc.ca/sites/default/files/uploads/publications/centredocs/vch_monitoring_report_16q2_final_aug19.pdf [Accessed July 1, 2017].
5. Hogg RS, Nosyk B, Harrigan PR, Lima VD, Chan K, Heath K et al. Rates of new infections in British Columbia continue to decline at a faster rate than in other Canadian regions. *HIV Med* 2013 Oct;14(9):581–2. DOI (<http://dx.doi.org/10.1111/hiv.12079>). PubMed (https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24033869&doct=Abstract).
6. Brown AE, Mohammed H, Ogaz D, Kirwan PD, Yung M, Nash SG et al. Fall in new HIV diagnoses among men who have sex with men (MSM) at selected London sexual health clinics since early 2015: testing or treatment or pre-exposure prophylaxis (PrEP)? *Euro Surveill* 2017 Jun;22(25):30553. DOI (<http://dx.doi.org/10.2807/1560-7917.ES.2017.22.25.30553>). PubMed (https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28662762&doct=Abstract).
7. Coates TJ, Richter L, Caceres C. Behavioural strategies to reduce HIV transmission: how to make them work better. *Lancet* 2008 Aug;372(9639):669–84. DOI ([http://dx.doi.org/10.1016/S0140-6736\(08\)60886-7](http://dx.doi.org/10.1016/S0140-6736(08)60886-7)). PubMed (https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18687459&doct=Abstract).
8. Cohen MS, Chen YQ, McCauley M, Gamble T, Hosseinipour MC, Kumarasamy N et al.; HPTN 052 Study Team. Prevention of HIV-1 infection with early antiretroviral therapy. *N Engl J Med* 2011 Aug;365(6):493–505. DOI (<http://dx.doi.org/10.1056/NEJMoa1105243>). PubMed (https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21767103&doct=Abstract).
9. Rodger AJ, Cambiano V, Bruun T, Vernazza P, Collins S, van Lunzen J et al.; PARTNER Study Group. Sexual Activity Without Condoms and Risk of HIV Transmission in Serodifferent Couples When the HIV-Positive Partner Is Using Suppressive Antiretroviral Therapy. *JAMA* 2016 Jul;316(2):171–81. DOI (<http://dx.doi.org/10.1001/jama.2016.5148>). PubMed (https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27404185&doct=Abstract).
10. Nosyk B, Zang X, Min JE, Krebs E, Lima VD, Milloy MJ et al. Relative effects of antiretroviral therapy and harm reduction initiatives on HIV incidence in British Columbia, Canada, 1996–2013: a modelling study. *Lancet HIV* 2017 Jul;4(7):e303–10. DOI ([http://dx.doi.org/10.1016/S2352-3018\(17\)30045-0](http://dx.doi.org/10.1016/S2352-3018(17)30045-0)). PubMed (https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28366707&doct=Abstract).
11. Brown AE, Gill ON, Delpech VC. HIV treatment as prevention among men who have sex with men in the UK: is transmission controlled by universal access to HIV treatment and care? *HIV Med* 2013 Oct;14(9):563–70. DOI (<http://dx.doi.org/10.1111/hiv.12066>). PubMed (https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23890150&doct=Abstract).
12. Phillips AN, Cambiano V, Nakagawa F, Brown AE, Lampe F, Rodger A et al. Increased HIV incidence in men who have sex with men despite high levels of ART-induced viral suppression: analysis of an extensively documented epidemic. *PLoS One* 2013;8(2):e55312. DOI (<https://doi.org/10.1371/journal.pone.0055312>). PubMed (https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23457467&doct=Abstract).
13. Chibo D, Kaye M, Birch C. HIV transmissions during seroconversion contribute significantly to new infections in men who have sex with men in Australia. *AIDS Res Hum Retroviruses* 2012 May;28(5):460–4. DOI (<https://doi.org/10.1089/aid.2011.0137>). PubMed (https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21806486&doct=Abstract).
14. Brenner BG, Roger M, Stephens D, Moisi D, Hardy I, Weinberg J et al.; Montreal PHI Cohort Study Group. Transmission clustering drives the onward spread of the HIV epidemic among men who have sex with men in Quebec. *J Infect Dis* 2011 Oct;204(7):1115–9. DOI (<http://dx.doi.org/10.1093/infdis/jir468>). PubMed (https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21881127&doct=Abstract).
15. Cáceres CF, Koechlin F, Goicochea P, Sow PS, O'Reilly KR, Mayer KH et al. The promises and challenges of pre-exposure prophylaxis as part of the emerging paradigm of combination HIV prevention. *J Int AIDS Soc* 2015 Jul;18(4 Suppl 3):19949. DOI (<https://doi.org/10.7448/IAS.18.4.19949>). PubMed (https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26198341&doct=Abstract).
16. Smith DK, Grohskopf LA, Black RJ, Auerbach JD, Veronese F, Struble KA et al.; U.S. Department of Health and Human Services. Antiretroviral postexposure prophylaxis after sexual, injection-drug use, or other nonoccupational exposure to HIV in the United States: recommendations from the U.S. Department of Health and Human Services. *MMWR Recomm Rep* 2005 Jan;54 RR-2:1–20. PubMed (https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15660015&doct=Abstract).
17. Tsai CC, Emau P, Follis KE, Beck TW, Benveniste RE, Bischofberger N et al. Effectiveness of postinoculation (R)-9-(2-phosphonylmethoxypropyl) adenine treatment for prevention of persistent simian immunodeficiency virus SIVmne infection depends critically on timing of initiation and duration of treatment. *J Virol* 1998 May;72(5):4265–73. DOI (<https://doi.org/10.1128/JVI.72.5.4265-4273.1998>). PubMed (https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=9557716&doct=Abstract).
18. Fonner VA, Dalglish SL, Kennedy CE, Baggaley R, O'Reilly KR, Koechlin FM et al. Effectiveness and safety of oral HIV preexposure prophylaxis for all populations. *AIDS* 2016 Jul;30(12):1973–83. DOI (<http://dx.doi.org/10.1097/QAD.0000000000001145>). PubMed (https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27149090&doct=Abstract).
19. Molina JM, Capitant C, Spire B, Pialoux G, Cotte L, Charreau I et al.; ANRS IPERGAY Study Group. On-Demand Preexposure Prophylaxis in Men at High Risk for HIV-1

Infection. *N Engl J Med* 2015 Dec;373(23):2237–46. DOI (<http://dx.doi.org/10.1056/NEJMoa1506273>). [PubMed](#) (https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27149090&dopt=Abstract).

20. Grant RM, Lama JR, Anderson PL, McMahan V, Liu AY, Vargas L et al.; iPrEx Study Team. Preexposure chemoprophylaxis for HIV prevention in men who have sex with men. *N Engl J Med* 2010 Dec;363(27):2587–99. DOI (<http://dx.doi.org/10.1056/NEJMoa1011205>) [PubMed](#) (https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21091279&dopt=Abstract).

21. Buchbinder SP, Glidden DV, Liu AY, McMahan V, Guanira JV, Mayer KH et al. HIV pre-exposure prophylaxis in men who have sex with men and transgender women: a secondary analysis of a phase 3 randomised controlled efficacy trial. *Lancet Infect Dis* 2014 Jun;14(6):468–75. DOI ([http://dx.doi.org/10.1016/S1473-3099\(14\)70025-8](http://dx.doi.org/10.1016/S1473-3099(14)70025-8)). [PubMed](#) (https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24613084&dopt=Abstract).

22. McCormack S, Dunn DT, Desai M, Dolling DL, Gafos M, Gilson R et al. Pre-exposure prophylaxis to prevent the acquisition of HIV-1 infection (PROUD): effectiveness results from the pilot phase of a pragmatic open-label randomised trial. *Lancet* 2016 Jan;387(10013):53–60. DOI ([http://dx.doi.org/10.1016/S0140-6736\(15\)00056-2](http://dx.doi.org/10.1016/S0140-6736(15)00056-2)). [PubMed](#) (https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26364263&dopt=Abstract).

23. Baeten JM, Donnell D, Mugo NR, Ndase P, Thomas KK, Campbell JD et al.; Partners PrEP Study Team. Single-agent tenofovir versus combination emtricitabine plus tenofovir for pre-exposure prophylaxis for HIV-1 acquisition: an update of data from a randomised, double-blind, phase 3 trial. *Lancet Infect Dis* 2014 Nov;14(11):1055–64. DOI ([http://dx.doi.org/10.1016/S1473-3099\(14\)70937-5](http://dx.doi.org/10.1016/S1473-3099(14)70937-5)) [PubMed](#) (https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25300863&dopt=Abstract).

24. Thigpen MC, Kebaabetswe PM, Paxton LA, Smith DK, Rose CE, Segolodi TM et al.; TDF2 Study Group. Antiretroviral preexposure prophylaxis for heterosexual HIV transmission in Botswana. *N Engl J Med* 2012 Aug;367(5):423–34. DOI (<http://dx.doi.org/10.1056/NEJMoa1110711>). [PubMed](#) (https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22784038&dopt=Abstract).

25. Van Damme L, Cornelis A, Ahmed K, Agot K, Lombaard J, Kapiga S et al.; FEM-PrEP Study Group. Preexposure prophylaxis for HIV infection among African women. *N Engl J Med* 2012 Aug;367(5):411–22. DOI (<http://dx.doi.org/10.1056/NEJMoa1202614>). [PubMed](#) (https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22784040&dopt=Abstract).

26. Marrazzo JM, Ramjee G, Richardson BA, Gomez K, Mgodi N, Nair G et al.; VOICE Study Team. Tenofovir-based preexposure prophylaxis for HIV infection among African women. *N Engl J Med* 2015 Feb;372(6):509–18. DOI (<http://dx.doi.org/10.1056/NEJMoa1402269>) [PubMed](#) (https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25651245&dopt=Abstract).

27. Choopanya K, Martin M, Suntharasamai P, Sangkum U, Mock PA, Leethochawalit M et al.; Bangkok Tenovir Study Group. Antiretroviral prophylaxis for HIV infection in injecting drug users in Bangkok, Thailand (the Bangkok Tenovir Study): a randomised, double-blind, placebo-controlled phase 3 trial. *Lancet* 2013 Jun;381(9883):2083–90. DOI ([http://dx.doi.org/10.1016/S0140-6736\(13\)61127-7](http://dx.doi.org/10.1016/S0140-6736(13)61127-7)). [PubMed](#) (https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23769234&dopt=Abstract).

28. Kugathasan H, Thavorn K, Moqueet N. Economic evaluations of HIV pre-exposure prophylaxis: A systematic review. 26th Annual Canadian Conference on HIV/AIDS Research Abstract EPH 106. Montreal, QC; 2017.

29. Gomez GB, Borquez A, Case KK, Wheelock A, Vassall A, Hankins C. The cost and impact of scaling up pre-exposure prophylaxis for HIV prevention: a systematic review of cost-effectiveness modelling studies. *PLoS Med* 2013;10(3):e1001401. DOI (<https://doi.org/10.1371/journal.pmed.1001401>) [PubMed](#) (https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23554579&dopt=Abstract).

30. Pathela P, Braunstein SL, Blank S, Shepard C, Schillinger JA. The high risk of an HIV diagnosis following a diagnosis of syphilis: a population-level analysis of New York City men. *Clin Infect Dis* 2015 Jul;61(2):281–7. DOI (<http://dx.doi.org/10.1093/cid/civ289>) [PubMed](#) (https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25870333&dopt=Abstract).

31. Smith DK, Pals SL, Herbst JH, Shinde S, Carey JW. Development of a clinical screening index predictive of incident HIV infection among men who have sex with men in the United States. *J Acquir Immune Defic Syndr* 2012 Aug;60(4):421–7. DOI (<http://dx.doi.org/10.1097/QAI.0b013e318256b2f6>) [PubMed](#) (https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22487585&dopt=Abstract).

32. Lachowsky N, Zui C, Serada P. HIV Incidence Rate and Predictors Among Gay and other Men who have Sex with Men (MSM) in Vancouver: Additional Benefit of an Administrative Health Data Linkage. 25th Annual Canadian Conference on HIV/AIDS Research. Winnipeg 12 -15 May 2016. Abstract EPHP5.04.

33. Samji H, Hu J, Moore D. HIV Incidence among Gay, Bisexual, and other Men who Have Sex with Men Attending Sexually Transmitted Infection Clinics in British Columbia. 25th Annual Canadian Conference on HIV/AIDS Research. Winnipeg May 12- 15 2015. Abstract EPHP 2.02.

34. Wilton J, Kain T, Fowler S, Hart TA, Grennan T, Maxwell J et al. Use of an HIV-risk screening tool to identify optimal candidates for PrEP scale-up among men who have sex with men in Toronto, Canada: disconnect between objective and subjective HIV risk. *J Int AIDS Soc* 2016 Jun;19(1):20777. DOI (<http://dx.doi.org/10.7448/IAS.19.1.20777>) [PubMed](#) (https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27265490&dopt=Abstract).

35. World Health Organization. Guideline on when to start antiretroviral therapy and on pre-exposure prophylaxis for HIV. September 2015. <http://www.who.int/hiv/publications/earlyrelease-arv/en/> [Accessed July 22, 2016].

36. Günthard HF, Saag MS, Benson CA, del Rio C, Eron JJ, Gallant JE et al. Antiretroviral Drugs for Treatment and Prevention of HIV Infection in Adults: 2016 Recommendations of the International Antiviral Society-USA Panel. *JAMA* 2016 Jul;316(2):191–210. [DOI](http://dx.doi.org/10.1001/jama.2016.8900) ([PubMed](https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27404187&dopt=Abstract) (https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27404187&dopt=Abstract)).

37. Khaketha M, Lachowsky NH. Four year trends in awareness and use of PrEP in gbMSM Vancouver, Canada. CROI 2017. Abstract 966.

38. Tan DH, Shubb A, Lawless J. High adherence but modest risk compensation in a PrEP demonstration project. 25th Annual Canadian Conference on HIV/AIDS Research Abstract MD 11. Winnipeg, Canada. 2016.

39. Volk JE, Marcus JL, Phengrasamy T, Blechinger D, Nguyen DP, Follansbee S et al. No New HIV Infections With Increasing Use of HIV Preexposure Prophylaxis in a Clinical Practice Setting. *Clin Infect Dis* 2015 Nov;61(10):1601–3. [DOI](http://dx.doi.org/10.1093/cid/civ778) ([PubMed](https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26334052&dopt=Abstract) (https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26334052&dopt=Abstract)).

40. Cairns G. New South Wales reports record drop in HIV diagnoses: fewest this year since records began. AIDSMAP 25 Aug 2017. <http://www.aidsmap.com/New-South-Wales-reports-record-drop-in-HIV-diagnoses-fewest-this-year-since-records-began/page/3167508> [Accessed October 8, 2017].

41. Baeten JM, Heffron R, Kidoguchi L, Mugo NR, Katabira E, Bukusi EA et al.; Partners Demonstration Project Team. Integrated Delivery of Antiretroviral Treatment and Pre-exposure Prophylaxis to HIV-1-Serodiscordant Couples: A Prospective Implementation Study in Kenya and Uganda. *PLoS Med* 2016 Aug;13(8):e1002099. [DOI](http://dx.doi.org/10.1371/journal.pmed.1002099) ([h.https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27552090&dopt=Abstract](https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27552090&dopt=Abstract)).

42. Hoffman S, Guidry JA, Collier KL, Mantell JE, Boccher-Lattimore D, Kaighobadi F et al. A Clinical Home for Preexposure Prophylaxis: Diverse Health Care Providers' Perspectives on the "Purview Paradox". *J Int Assoc Provid AIDS Care* 2016 Jan-Feb;15(1):59–65. [DOI](http://dx.doi.org/10.1177/2325957415600798) ([PubMed](https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26293904&dopt=Abstract) (https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26293904&dopt=Abstract)).

43. US Public Health Service. Pre-exposure prophylaxis for the prevention of HIV infection in the United States - 2014. A clinical practice guideline. <https://www.cdc.gov/hiv/pdf/prepguidelines2014.pdf> [Accessed July 1, 2017].

44. Petroll AE, Walsh JL, Owczarzak JL, McAuliffe TL, Bogart LM, Kelly JA. PrEP Awareness, Familiarity, Comfort, and Prescribing Experience among US Primary Care Providers and HIV Specialists. *AIDS Behav* 2017 May;21(5):1256–67. [DOI](http://dx.doi.org/10.1007/s10461-016-1625-1) (https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27885552&dopt=Abstract).

45. Blackstock OJ, Moore BA, Berkenblit GV, Calabrese SK, Cunningham CO, Fiellin DA et al. A Cross-Sectional Online Survey of HIV Pre-Exposure Prophylaxis Adoption Among Primary Care Physicians. *J Gen Intern Med* 2017 Jan;32(1):62–70. [DOI](http://dx.doi.org/10.1007/s11606-016-3903-z) ([PubMed](https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27778215&dopt=Abstract) (https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27778215&dopt=Abstract)).

46. BC Centre for Excellence in HIV/AIDS. Guidance for the use of Pre-Exposure Prophylaxis (PrEP) for the prevention of HIV acquisition in British Columbia. Vancouver (BC); October 11, 2016. <http://www.cfenet.ubc.ca/publications/centre-documents/guidance-use-pre-exposure-prophylaxis-prep-prevention-hiv-acquisition> [Accessed July 1, 2017].

47. Ministere de la Sante et des Services sociaux. Avis interimaire sur la prophylaxie preexposition au virus de l'immunodeficiency humaine. 2013. <http://publications.msss.gouv.qc.ca/msss/document-000313/> [Accessed July 1, 2017].

48. Yacoub R, Nadkarni GN, Weikum D, Konstantinidis I, Boueilh A, Grant RM et al. Elevations in Serum Creatinine With Tenofovir-Based HIV Pre-Exposure Prophylaxis: A Meta-Analysis of Randomized Placebo-Controlled Trials. *J Acquir Immune Defic Syndr* 2016 Apr;71(4):e115–8. [DOI](http://dx.doi.org/10.1097/QAI.0000000000000906) ([PubMed](https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26627105&dopt=Abstract) (https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26627105&dopt=Abstract)).

49. Cohen S, Vittinghoff E, Philip SS, Doblecki-Lewis S, Bacon O, Chege W et al. Quarterly STI Screening Optimizes STI Detection Among PrEP Users in the Demo Project. In Abstracts and Proceedings of the Conference on Retroviruses and Opportunistic Infections. Boston, MA. February 22–25, 2016. Abstract 870.

50. Davie Buyers Club. How to access PrEP without insurance in Vancouver (for \$45 CAD a month). <https://daviebuyersclub.wordpress.com/> [Accessed August 31, 2017].

51. Canadian Agency for Drugs and Technologies in Health. CADTH Canadian Drug Expert Committee Final Recommendation: Emtricitabine/Tenofovir disoproxil fumarate. Common Drug Review; Notice of Final Recommendation—Aug 24, 2016. https://www.cadth.ca/sites/default/files/cdr/complete/SR0479_complete_Truvada_Aug-26-16.pdf

52. Ontario to cover HIV prevention pill under public health plan. CBC News Posted Sep22, 2017. <http://www.cbc.ca/news/health/hiv-prep-coverage-1.4302184> [Accessed October 8, 2017].