How will climate change impact microbial foodborne disease in Canada?

BA Smith*, A Fazil

Abstract

Foodborne disease is a major concern in Canada and represents a significant climate change-related threat to public health. Climate variables, including temperature and precipitation patterns, extreme weather events and ocean warming and acidification, are known to exert significant, complicated and interrelated effects along the entire length of the food chain. Foodborne diseases are caused by a range of bacteria, fungi, parasites and viruses, and the prevalence of these diseases is modified by climate change through alterations in the abundance, growth, range and survival of many pathogens, as well as through alterations in human behaviours and in transmission factors such as wildlife vectors. As climate change continues and/or intensifies, it will increase the risk of an adverse on food safety in Canada ranging from increased public health burden to the emergence of risks not currently seen in our food chain. Clinical and public health practitioners need to be aware of the existing and emerging risks to respond accordingly.

Introduction

Many of the recently observed climate changes have been unprecedented over the preceding decades to millennia (1,2). The projected changes to climate variables in Canada, including temperature and precipitation metrics, are well-documented (3). In particular, annual average air and water temperatures and precipitation are expected to rise across the country, with regional and seasonal variations (4). Already the consequences of climate change within Canada are evident (2). Additional wide ranging and significant effects on many areas are expected, including on the prevalence of foodborne diseases. The World Health Organization recently released a report estimating the burden of foodborne illnesses caused by 31 hazards (bacteria, viruses, parasites, toxins and chemicals), where they estimated that, worldwide, these hazards caused 600 million foodborne illnesses and 420,000 deaths in 2010 (5). In Canada alone, there were an estimated four million cases of microbial foodborne diseases per year in the time period from 2000 to 2010 (6). Hence, an increase in cases of foodborne disease due to climate change would exacerbate an already important public health concern in Canada.

Food safety, food security and food system challenges are thought to represent the most significant climate change-related threats to human health globally (7–12). Researchers anticipated a link between foodborne illness and climate change, since the pathogens that cause many foodborne infectious diseases are known to be influenced by climate and weather variables (13–21). Despite their obvious importance, these food safety issues have received little attention in the climate-health literature relative to other health indicators (12). The purpose of this paper is to provide a summary of how climate change will increase the risk of microbial foodborne diseases, and what can be done to address this.

Effect of climate change on foodborne illness

The climate variables that most influence foodborne illness are increased air temperature, water temperature and precipitation (13,14). These variables affect foodborne illness through three mechanisms: abundance, growth, range and survival of pathogens in crops, livestock and the environment (22); human exposure factors, including cooking practices, food handling and food preferences that are influenced by a longer period of warm temperatures; and transmission factors, such as wildlife vectors, that transfer pathogens to food.

Studies from regions with similar climate and seasonality to Canada have linked foodborne contamination and disease incidence with seasonal trends (13,14). These studies reported a strong association between increasing air and water temperatures and an altered and extended summer season for non-cholera Vibrio species (spp.) infections. So strong was the association that it was possible to predict future disease incidence based on historical temperature patterns. Climate change is expected to have similar effects on the prevalence of other pathogens with similar thermal requirements.
Current and emerging foodborne illnesses

When the causative agent is identified, the five bacteria that account for over 90% of foodborne illnesses in Canada are norovirus, *Clostridium perfringens*, *Campylobacter* spp., *Salmonella* spp. and *Bacillus cereus* (Table 1) (6). Four of these pathogens have been shown to be influenced by climate variables. Given the projected changes to climate in Canada, it is anticipated that the overall burden from these and other pathogens will increase. Additional pathogens ranked lower in Canada (6), for which there is a known link between climate and foodborne diseases, are also included in Table 1. Although generalizations are apparent (e.g. an increase in extreme events, precipitation and temperature increases incidence of many foodborne diseases), the precise impact of climate change is pathogen- and commodity-specific. The incidence of *Vibrio* spp. has been linked to air temperatures, consumption practices and water temperatures (40,41) and it is anticipated that the relative ranking of *Vibrio* spp. will increase with climate change.

Other foodborne disease issues

There are other less common foodborne infections that are likely to increase with climate change and add to the burden to personal and public health. Mycotoxins, produced by fungi growing in crops such as corn and cereal grains, proliferate with increased air temperature, humidity and precipitation (45). Increased temperature stress or alterations to livestock housing conditions as a result of climate change could also drive increased antimicrobial use in food-producing animals, which might increase occurrence of antimicrobial-resistant foodborne illness in humans (46). Because climate change is a global issue, and because Canada imports a significant percentage of its foodstuffs especially in the winter months, impacts on contamination of imported foods with pathogens exotic to Canada are expected.

Clinical and public health response

The medical and public health systems as well as the public will need to prepare for the anticipated amplification in the rate of illness from known foodborne pathogens and the emergence of illness from either exotic or less well-known pathogens. Clinicians need to stay informed on foodborne illness trends to better recognize and diagnose cases and, when indicated, treat them in the light of known trends in antimicrobial resistance. Public health needs to prepare for more outbreaks. Laboratory capacity will need to increase to detect the increase in persistent as well as emerging infections. There will be a need for increased public awareness of this climate-related trend and the importance of good food safety practices. And as always, there will be a need for strengthening our surveillance systems to monitor changing trends to better understand the changing profile of illness and the distribution of animal reservoirs.
Discussion

Climate change will increase the risks from existing and emerging foodborne diseases, primarily through increases in extreme events, increases in air and water temperatures, and changes to precipitation frequency and intensity. It is important to note, however, that these trends regarding foodborne illness and climate change involve complex systems with many interacting factors (47).

The impact of climate change on foodborne disease is not a linear relationship, as it involves modifiable risk factors. Efforts to minimize the incidence and impact of climate-related foodborne illness should focus on these modifiable factors through farm-level interventions such as vector control, processor interventions such as improved cleaning procedures and modifying human behaviours to promote food safety. Other factors will also impact the incidence of foodborne illness, including an aging and increasingly diverse population and changes to imported foods; many of these factors are themselves influenced by climate change, yet often not explicitly considered in climate change and food safety research.

Future directions

Cross-disciplinary research using various methodological tools can provide insight and forecast disease transmission patterns under specific climatic conditions (48). One promising example is mathematical modelling, as it can be used to

<table>
<thead>
<tr>
<th>Pathogen</th>
<th>Symptoms (42)</th>
<th>Current cases per 100,000 people (6)</th>
<th>Influence of climate on occurrence (20,43)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Norovirus</td>
<td>Symptoms include nausea, vomiting, diarrhea, stomach cramps, low-grade fever, chills, headache, muscle aches and fatigue</td>
<td>3,223.79</td>
<td>Extreme weather events (such as heavy precipitation and flooding) and decreased air temperature</td>
</tr>
<tr>
<td>Clostridium perfringens</td>
<td>Symptoms include diarrhea, pain and cramps, stomach bloating, increased gas, nausea, weight loss, loss of appetite, muscle aches and fatigue. In rare cases, severe dehydration, hospitalization, death</td>
<td>544.50</td>
<td>Uncertain</td>
</tr>
<tr>
<td>Campylobacter spp.</td>
<td>Symptoms include fever, nausea, vomiting, stomach pain, and diarrhea. In rare cases, hospitalization and long-lasting health effects, death</td>
<td>447.23</td>
<td>Changes in the timing or length of seasons, increased air temperatures, precipitation and flooding</td>
</tr>
<tr>
<td>Salmonella spp., nontyphoidal</td>
<td>Symptoms include chills, fever, nausea, diarrhea, vomiting, stomach cramps, and headache. In rare cases, hospitalization and long-lasting health effects, death</td>
<td>269.26</td>
<td>Changes in the timing or length of seasons, extreme weather events, increased air temperatures</td>
</tr>
<tr>
<td>Bacillus cereus</td>
<td>Symptoms include diarrhea or vomiting. In rare cases, hospitalization and long-lasting health effects, death</td>
<td>111.60</td>
<td>Changes in the timing or length of seasons, drought</td>
</tr>
<tr>
<td>Verotoxigenic Escherichia coli non-O157</td>
<td>Symptoms include diarrhea. In rare cases, hospitalization and long-lasting health effects, death</td>
<td>63.15</td>
<td>Changes in the timing or length of seasons, extreme weather events, increased air temperatures</td>
</tr>
<tr>
<td>Verotoxigenic Escherichia coli O157</td>
<td>Symptoms include diarrhea. In rare cases, hospitalization and long-lasting health effects, death</td>
<td>39.47</td>
<td>Changes in the timing or length of seasons, extreme weather events, increased air temperatures</td>
</tr>
<tr>
<td>Toxoplasma gondii</td>
<td>Symptoms include minimal to mild illness with fever. In rare cases, inflammation of the brain and infection of other organs, birth defects</td>
<td>28.10</td>
<td>Extreme weather events, increased air temperatures, precipitation (44)</td>
</tr>
<tr>
<td>Vibrio parahaemolyticus</td>
<td>Symptoms include diarrhea, stomach cramps, nausea, vomiting, fever and headache. In rare cases, liver disease</td>
<td>5.53</td>
<td>Extreme weather events, increased air temperatures, increased sea surface temperature</td>
</tr>
<tr>
<td>Listeria monocytogenes</td>
<td>Symptoms include fever, nausea, cramps, diarrhea, vomiting, headache, constipation, muscle aches. In severe cases, stiff neck, confusion, headache, loss of balance, miscarriage, stillbirth, premature delivery, meningitis, death</td>
<td>0.55</td>
<td>Extreme weather events, increased air temperatures, precipitation</td>
</tr>
<tr>
<td>Vibrio vulnificus</td>
<td>Symptoms include diarrhea, stomach cramps, nausea, vomiting, fever, headache. In rare cases, liver disease</td>
<td><0.01</td>
<td>Extreme weather events, increased air temperatures, increased sea surface temperature</td>
</tr>
</tbody>
</table>

Abbreviations: spp., species; <, inferior to
Note: Currently, the five most common foodborne pathogens are norovirus, *Clostridium perfringens*, *Campylobacter* spp., *Salmonella* spp. and *Bacillus* cereus
provide better insights into the complexities of climate and infection interactions and allow for testing of various adaption or mitigation measures to counteract the negative impacts of climate change on food safety. Modelling studies apply a set of logical assumptions to predict, with an inevitable degree of uncertainty, how risks may develop in the future. A risk modelling framework specific to Canada has been developed (50). It provides a structured platform for constructive, transparent discussion around the state of knowledge on climate change impacts on food safety. The framework has been used to project the potential climate change impacts on public health for mycotoxins in wheat, protozoa in drinking water, and Vibrio parahaemolyticus in oysters to better understand the range of food and water safety related implications of climate change (49).

Conclusion
The prevalence of foodborne illnesses is likely to increase with climate change. This is attributed to anticipated increases in both the pathogens that already commonly cause foodborne illness and the emerging pathogens, including those that produce mycotoxins and other rare pathogens, which have been found to be present in some imported foods. The treatment of foodborne illness will be complicated by trends in antimicrobial resistance; however, the effect of climate change on foodborne illness is not linear due to a number of modifiable risk factors, and this needs to be the focus of both clinical and public health efforts. Additional research, including those using techniques such as mathematical modelling, can identify new approaches to prevention, early detection and mitigation.

Authors’ statement
BAS — Conception, analysis and data interpretation, writing and editing
AF — Conception, writing and editing

Conflict of interest
None.

Funding
This work was supported by the Public Health Agency of Canada.

Visual Abstract

Note: An increase in foodborne illnesses with climate change involve complex systems with many interacting factors
References

22. Ebi K. Climate change and health risks: assessing and responding to them through ‘adaptive management’. Health Aff (Millwood) 2011 May;30(5):924–30. DOI PubMed

41. Smith BA, Ruthman T, Sparling E, Auld H, Comer N, Young I, Lamberding AM, Fazil A. A risk modeling framework to evaluate the impacts of climate change and adaptation on food and water safety. Food Res Int 2015;68:78–85. DOI

