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Using Earth observation images to inform risk 
assessment and mapping of climate change-
related infectious diseases
SO Kotchi1*, C Bouchard1, A Ludwig1, EE Rees1, S Brazeau1

Abstract

The number of human cases of several climate-related infectious diseases, including tick- and 
mosquito-borne diseases, has increased in Canada and other parts of the world since the end 
of the last century. Predicting and mapping the risks associated with these diseases using 
environmental and climatic determinants derived from satellite images is an emerging method 
that can support research, surveillance, prevention and control activities and help to better 
assess the impacts of climate change in Canada. Earth observation images can be used to 
systematically monitor changes in the Earth’s surface and atmosphere at different scales of 
time and space. These images can inform estimation and monitoring of environmental and 
climatic determinants, and thus disease prediction and risk mapping. The current array of Earth 
observation satellites provides access to a large quantity and variety of data. These data have 
different characteristics in terms of spatial, temporal and thematic precision and resolution. 
The objectives of this overview are to describe how Earth observation images may inform risk 
assessment and mapping of tick-borne and mosquito-borne diseases in Canada, their potential 
benefits and limitations, the implications and next steps.
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Introduction

Climate change has resulted in rising temperatures and 
ocean levels, increased climatic variability, and changes in the 
frequency and intensity of precipitation (1,2). Evidence of climate 
change started in Canada in the 1950s (3–6) and the average 
temperature has increased more than 1.5°C between 1950 and 
2010—almost double the global average (7). The extent of this 
change has varied by region, with the most significant changes 
occurring in northern Canada and especially in the Arctic (8). 
The average humidity levels in Canada have also increased, with 
an average increase in precipitation of about 12% (8). These 
trends are likely to continue, with an increase in the intensity 
and frequency in extreme weather events such as heat waves, 
droughts, floods and forest fires (5,6,8–10). Urbanization, and 
its creation of heat islands, has contributed to these climate 
changes (11).

Climate has a direct impact on the movements of human 
populations and infectious disease vectors, such as ticks and 
mosquitoes, and their host populations (12,13). Increased 
temperature and climate variability are leading to an increase 

and geographic expansion of vector populations and the 
diseases that they transmit (1,7,11,14–22). The northern 
expansion of ticks, for example, has been demonstrated in 
numerous studies and has been associated with a steady increase 
in the number of human cases of Lyme disease (23–25). One 
study predicted that West Nile virus is likely to increase more 
than 17-fold by 2050 (26). With the northward expansion of the 
Aedes albopictus mosquito in the United States (US) (27,28), 
North America may be at risk for exotic mosquito-borne diseases 
(MBDs) such as dengue, Zika, yellow fever and chikungunya 
viruses. Other tick-borne diseases (TBDs) and MBDs are likely 
to increase or emerge in Canada as global warming occurs 
(26,27,29–31). 

In light of the interplay between climate change and vector-
borne diseases, it is increasingly important to be able to measure 
changes in temperature, precipitation and other variables related 
to habitat. Canada is a huge country, and current surveillance 
strategies are not designed to monitor the impact of climate 
change on the geographic spread of TBDs and MBDs. Earth 
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observation tools are increasingly being used to increase our 
capacity to do so. Earth observation refers to the acquisition, 
processing, analysis, interpretation and dissemination of physical, 
chemical and biological information on land, oceans and the 
atmosphere by using satellite, airborne or in situ remote sensing 
sensors. Remote sensing technologies, which measure the 
properties of an object by means of electromagnetic waves, can 
be used in combination with many other terrestrial sensors, such 
as weather stations and balloon-probes (32). 

This overview focuses on Earth observation images acquired by 
remote sensing satellites. Earth observation images and their 
derivatives provide data related to temperature, precipitation, 
humidity, forest, wetlands, agriculture, built environments and 
more. A number of studies have demonstrated the effectiveness 
of Earth observation images and their derivatives for risk 
assessment and mapping of TBDs and MBDs around the 
world. The Malaria Atlas Project (MAP) (33,34), the Epidemic 
Prognosis Incorporating Disease and Environmental Monitoring 
for Integrated Assessment (EPIDEMIA) (35) and the Mapping 
Malaria Risk in Africa (MARA) (36,37) are examples of monitoring 
programs based on the use of Earth observation images and 
their derivatives. In light of this, the use of Earth observation 
images to track TBDs and MBDs, and assess the geographic and 
climactic conditions for their spread, has been applied in Canada. 
The objectives of this overview are to describe how Earth 
observation image may inform risk assessment and mapping for 
the surveillance of TBD and MBD in Canada; summarize their 
potential benefits and limitations and identify the implications 
and next steps.

Earth observation images for risk 
assessment and mapping
Earth observation images are obviously not used to directly 
observe ticks and mosquitoes inside their habitats. Instead, 
Earth observation images are used to derive data on variables 
and indicators that serve to characterize the environmental and 
climatic determinants (ECD) that influence the presence and the 
development of ticks and mosquitoes. The ECD data is derived 
from Earth observation images through several processing 
and analyses methods, including geometric, radiometric and 
atmospheric corrections and image classification analyses. The 
resultant ECDs include surface temperature, air temperature, 
soil moisture, surface moisture, atmospheric water vapor, air 
humidity, amount of precipitation, topography, snow cover and 
thickness, soil type, vegetation type and density, vegetation 
indices, flooded areas, wetlands, water quality parameters 
(such as chlorophyll concentration, dissolved organic matter, 
suspended sediments, color, salinity), forests, urban and built-up 
areas and agricultural areas (33,38–40). Thus, many ECDs derived 
from Earth observation images are important determinants of 
TBDs and MBDs vectors survival and abundance. Table 1 lists 

some of the most commonly used Earth observation satellites, 
their sensors, and their derivatives. 

Mosquito-borne diseases
Environmental and climatic determinants of MBDs include both 
anthropogenic environments (such as urban, peri-urban and rural 
areas) and natural environments (such as forests and wetlands) 
(7,17,49–52). The ECDs include climatic and microclimatic factors 
that are known to affect the spread of mosquito-borne disease, 
such as temperature, humidity and precipitation (17,20,52–54). 
There are also specific ECDs for specific mosquito species. 
Some species, such as Aedes albopictus (that spreads dengue, 
chikungunya and Zika viruses) or Culex pipiens (that spreads 
West Nile virus), are highly adapted to urban environments. 
Other species, such as Culiseta melanura (that spreads Eastern 
equine encephalitis), are specific to natural wetlands and are 
found only in rural areas. 

Tick-borne diseases 
The ECDs of tick-borne diseases also vary by species. The Lyme 
disease vector, Ixodes scapularis, has evolved within temperate 
forest biomes (mixed hardwood) in North America, while the 
Powassan virus vector, Ixodes cookei, lives primarily in burrows 
and more rarely on vegetation. Historically, changes in the 
distribution of various types of habitat and host species have 
been associated with changes in the distribution and abundance 
of ticks (55). Tick-borne disease ECD include the type and 
density of forest cover and degree of forest fragmentation, as 
well as the prevailing temperature and humidity conditions in the 
forest habitats (12,13,17,56–63). 

Risk assessment
The ECDs derived from Earth observation images have been 
used to assess the risks associated with different climate-related 
diseases (49,50,52,64–69). The possibility of human infection 
depends on a series of risks: the risk that the relevant vectors 
are present in the environment; the risk that those vectors are 
infected with a pathogen; the risk that human populations 
are exposed to those infected vectors; and the risk of disease 
transmission. The ECDs, derived from Earth observation image, 
combined with surveillance data, are used to assess, model and 
map these different risk components. Earth observation images 
and their derivatives can be used to map risk on a regular basis 
once the risk model based on those data has been developed 
and validated. 

The most common use of Earth observation images for risk 
assessment and mapping is that of environmental risk associated 
with the presence or abundance of ticks and mosquitoes. 
The ECDs derived from Earth observation images can also be 
combined with human case data to directly assess and map the 
risk of disease transmission. Figure 1 presents an example of an 
Earth observation-informed operational framework that can be 
used for climate-related infectious diseases risk assessment and 
mapping.
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Satellite

name
Sensor

Spatial 

Res

Temp 

Res

Derivative environmental and climatic determinants

Land 

cover

Soil 

type

Veg 

type

Veg

quantity

Snow 
cover

depth

Water 

quality

Surface 

humidity

Surface 

Temp°

Air 

Temp°

Water 

vapour

Prec

Aqua AIRS
2.3–41

km
0.5 
day - - - - - - - Y Y - - 

DMSP SSM/I 13–69km 1 day - - - - Y - - - - Y Y

GCOM-W1 AMSR-2 3–62 km 1 day - - - - Y Y - - - Y Y

GPM DPR 5 km 1–2 
hours - - - - - - - - - - Y

GPM GMI 4–32 km 1–2 
hours - - - - - - - Y - Y Y

Landsat-5 TM 30–120 m 16 
days Y Y Y Y Y - Y Y - - - 

Landsat-7 ETM+ 15–60 m 16 
days Y Y Y Y Y - Y Y - - - 

Landsat-8 OLI 15–30 m 16 
days Y Y Y Y Y - -  - - - - 

Landsat-8 TIRS 100 m 8 
days - - - - - - - Y - Y -

MSG SEVIRI 1–4.8 km 15 
min - - - Y - - Y Y - Y Y

NOAA 
15-19 AVHRR/3 1.1 km 0.5 

day Y - - Y Y - Y Y - Y -

Sentinel-1 C-SAR 5–100 m 12 
days Y - Y Y Y - - - - - - 

Sentinel-2 MSI 10–60 m 5 
days Y Y Y Y Y - - - - - - 

Sentinel-3 OLCI 300 m 2 
days Y - - Y - Y - - - - - 

Sentinel-3 SLSTR 500–1000 
m

1–4 
days - - - Y Y - - Y - - - 

SMAP MWR 40 km 1.5 
days - - - - - Y Y - - - -

SNPP ATMS 16–75 km 0.5 
day - - - - - - Y - Y  - - 

SNPP VIIRS 375–750 
m 6 min - - - Y Y - Y Y - Y -

Terra ASTER 15–90 m 5 
days Y Y - Y Y - - Y - Y -

Terra, Aqua MODIS 250–1000 
m 5 min Y Y Y Y Y Y Y Y Y Y -

Table 1: In-operation open access Earth observation images and their derivative environmental and climatic 
determinants

Abbreviations: min, minutes; Prec, precipitation; Res, resolution; Temp, temperature; Veg, vegetation; Y, images acquired by the satellite/sensor system; -, not applicable
Satellite names: DMSP, Defense Meteorological Satellite Program; GCOM, Global Change Observation Mission; GPM, Global Precipitation Measurement Mission; MSG, Meteosat Second Generation; 
NOAA, National Oceanic and Atmospheric Administration; SMAP, Soil Moisture Active Passive; SNPP, Suomi National Polar-orbiting Partnership Satellite
Sensor names: AIRS, Atmospheric Infrared Sounder; AMSR, Advanced Microwave Scanning Radiometer; ASTER, Advanced Spaceborne Thermal Emission and Reflection radiometer; ATMS, Advanced 
Technology Microwave Sounder; AVHRR, Advanced Very High Resolution Radiometer; C-SAR, C-band Synthetic Aperture Radar; DPR, Dual-frequency Precipitation Radar; ETM+, Enhanced Thematic 
Mapper Plus; GMI, Global Precipitation Measurement (GPM) Microwave Imager; MODIS, Moderate Resolution Imaging Spectroradiometer; MSI, Multispectral Imager; MWR, Microwave (MW) 
radiometer; OLCI, Ocean and Land Colour Instrument; OLI ,Operational Land Imager; SEVIRI, Spinning Enhanced Visible and Infrared Imager; SLSTR, Sea and Land Surface Temperature Radiometer; 
SSM/I, Special Sensor Microwave Imager; TIRS, Thermal Infrared Sensor; TM, Thematic Mapper; VIIRS, Visible Infrared Imaging Radiometer Suite (41–48)
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Benefits and limitations 
The use of Earth observation images and their derivatives to 
estimate ECDs and to map the risk of transmission of climate-
related infectious diseases combines numerous advantages that 
cannot be matched by any other types of data (17,22,70,71). 
There are at least five potential benefits of using Earth 
observation images to inform public health risk assessment for 
vector-borne diseases in Canada.

First, Canada is a vast country that is not currently covered by 
field observation data use in traditional surveillance methods 
(e.g. trapping and analyzing density and type of mosquitoes 
or mapping out tick habitat by checking for ticks). These 
traditional surveillance data generally cover only a limited 
number of surveillance sites, which are unevenly distributed 

across provinces. In contrast, the Earth observation images 
cover continuous surfaces of the country, where each point 
of the observed territory is a “surveillance site”. In addition, 
these images can cover large geographic areas such as Canada 
in a timeframe (minutes, hours and days, depending on the 
satellite used) that cannot be achieved by traditional surveillance 
methods.

Second, Canada has many remote regions that are difficult to 
access. These regions are covered by Earth observation images 
in the same way as the rest of the country. This offers the unique 
advantage of being able to continuously monitor even the 
more remote regions. This is particularly important in Canada, 
as some of these remote regions, such as the Arctic, are being 
disproportionately affected by climate change.

Earth observation data acquisition, 
processing and integration

Estimation of environmental 
and climatic determinants

Earth observation 
images (EOI)

Multisensor
image 

processing and 
integration

Climatic and 
microclimatic 
determinants

Environmental 
determinants Ground truth dataMeteorological 

data

Risk of vector 
presence/ 
abundance

Potential 
vector habitat

Risk of
 exposition to 

infected vectors

Vector 
surveillance data

Human case data Risk of disease 
transmission

Risk modelling and 
validation

Risk mapping

Outputs for 
public health 
actions

Vector habitat map Vector presence/ 
abundance risk map

Exposition to 
infected vectors risk 

map
Disease transmission 

risk map

Estimated population 
at risk

Target areas for 
vector active 
surveillance

Target areas for 
control and 
prevention

Figure 1: Earth observation-informed operational framework for climate-related infectious diseases risk assessment 
and mapping
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Third, in a related benefit, the use of Earth observation images 
would address the high cost of active surveillance over a large 
geographical area. Earth observation images acquired by 
multiple satellites are freely accessible via open data platforms or 
are accessible at low-cost. In Canada, there is a large amount of 
ready-to-use Earth observation image derivative data. These data 
are produced by federal departments, such as Agriculture and 
Agri-Food Canada, Natural Resources Canada and Environment 
and Climate Change Canada. They are freely available via the 
open government web site (https://open.canada.ca/en/open-
data).

Fourth, active surveillance methods and protocols vary according 
to projects, years, programs and jurisdictions. This variability 
renders it difficult to make comparisons by time and place. 
In contrast, the Earth observation images are acquired on a 
standardised and regular basis. This enables comparisons of 
signal detections (e.g. abnormal situations and alerts) in a more 
efficient manner across the country.

Fifth, Earth observation satellites can be mobilized quickly to 
support real-time emergency operations in the event of major 

disasters that pose public health risks. For example, in the case 
of flooding, Earth observation images can be used to delineate 
and monitor risk areas where mosquito-control activities may be 
needed. The International Charter on Space and Major Disasters 
(72) was established to facilitate the mobilization of Earth 
observation satellites from various space agencies to support 
emergency operations related to major disasters. This charter 
was first activated for an infectious disease event during the 
Ebola outbreak in West Africa in 2014 (73). The benefits of using 
Earth observation images and their derivatives are summarized in 
Table 2.

Limitations
There are a number of limitations to consider with the use of 
Earth observation images and their derivatives.

First, Earth observation image derivatives were originally 
developed for other fields of application, including agriculture, 
forestry, and nature conservation and these data quality 
indicators were primarily intended to respond to the application 
objectives for which they were created. This means there is a 
lack of specific Earth observation image derivatives developed 

Advantage Description 

Accurate, regular measurements at different 
spatial and temporal resolutions 

Compared with data acquired on the ground, the homogeneity and regularity of observations 
made using Earth observation images permit more accurate measurement of changes 
occurring over time, such as environmental and climatic changes. These measurements 
are made at different spatial and temporal resolutions which allow for the observation of 
phenomena (e.g. vector habitats, microclimatic conditions) and their changes according to 
a varied spectrum of measurement scales ranging from 0.31 m to over 75 km, and temporal 
observation frequencies ranging from 5 minutes to 16 days. This multi-scale observation 
capacity offered by Earth observation images is unique and makes it possible to estimate ECD 
and to map risk on local, regional and global scales according to the public health objectives.

High spatial density of observations, combined 
with coverage of vast territories, remote regions 
and areas difficult to access

The measurements made using Earth observation images are continuous data covering the 
entire geographic area covered by the sensor. ECDs can be estimated and low-risk or high-
risk areas identified for any part of the territory. Earth observation image cover immense 
territories that cannot be sampled with ground data. Most Earth observation satellites can 
pick up images covering the entire planet, including remote regions and geographic areas 
difficult to access. This is very useful in supporting public health initiatives that target remote 
communities.

Recurrence of observations over a long period Earth observation images have been acquired recurrently for nearly 40 years. The observation 
capacity for any given territory over long periods offers a great opportunity to study and 
predict the impact of climate change on the emergence and re-emergence of climate-related 
diseases.

Ready-to-use Earth observation image derivatives Many ready-to-use products have been developed from Earth observation images to make 
these data accessible to a broader community of persons not expert in the processing 
and analysis of Earth observation images. These products relate to both environmental 
determinants and climatic determinants.

Low-cost access to vast amounts of data There are over 1,700 Earth observation satellites in operation (74). Earth observation images 
from many of these satellites are accessible free of charge via open data platforms, as are the 
majority of Earth observation image derivatives. The majority of commercial Earth observation 
images involve data with very high spatial resolution (less than 2 m). Costs associated with 
these data are dropping quickly with the increase in Earth observation systems and the 
improvement of their performance.

Speed of mobilization of many satellites to 
support emergency operations 

Under the International Charter on Space and Major Disasters (72), satellites and services 
can be rapidly mobilized by numerous space agencies to support the management of 
emergencies in major disaster zones. They offer the ability to quickly assess risks of epidemics 
in these zones in a context where the number of major disasters is rising with climate change. 
The Charter has been operational since the year 2000. It was activated to support responses 
related to the outbreak of the Ebola virus in West Africa in 2014 (73). This marked the first 
time the Charter was activated for the management of an infectious disease.

Table 2: Advantages of using Earth observation images in the estimation of environmental and climatic 
determinants and risk mapping of climate-related infectious diseases 

Abbreviation: ECD, environmental and climatic determinants
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for targeted infectious diseases like TBDs and MBDs. As a result, 
several data quality indicators (geographic coverage, spatial 
resolution, temporal resolution, temporal aggregation scale, 
update frequency, archiving period, composition of thematic 
classes, and data accuracy) of common Earth observation images 
and their derivatives do not meet data quality criteria needed for 
the estimation of ECDs associated to climate-related infectious 
diseases. 

Second, the most used Earth observation images for the 
estimation of climatic and microclimatic determinants rarely have 
both high spatial and temporal resolution. For example, surface 
temperature and soil moisture can vary a good deal by place 
and over time. The Earth observation images that are used to 
calculate them do not allow for the combination of a high spatial 
resolution (less than 30 m) with a high temporal resolution (less 
than one day) (17,68,75); however, this combination is necessary 
to characterize the dynamics of the microclimatic conditions and 
vectors’ microhabitats. Thus, these data do not always allow 
for control and prevention activities at a local scale (e.g. for a 
municipality).

Third, the use of Earth observation images and their derivatives 
to estimate ECDs on a fine scale and to produce risk maps over 
long periods and over large geographic areas generates a huge 
amount of data. The classic methods and technologies used for 
processing, analyzing, storage and management of such big data 
are currently limited.

These and other limitations associated with the use of Earth 
observation images and their derivatives are summarized in 
Table 3. 

Discussion

Climate change is facilitating the emergence and re-emergence 
of tick-borne and mosquito-borne diseases in Canada. The 
use of ECDs derived from Earth observation images makes it 
possible to map the geographic expansion of these vectors and 
assess their disease risks. Currently, Earth observation images 
can cover all the urban, rural and remote regions of Canada 
in a standardized way on a regular basis at various spatial and 

Limitation Description

Coarse spatial 
resolution

The spatial resolution expresses the size of the smallest detail that can be observed in the image. A spatial resolution 
less than 30 m is generally recommended for mapping applications on a local scale. Earth observation images and their 
derivatives relating to climatic and microclimatic determinants have generally a coarse spatial resolution (more than 
1000 m).

Low temporal 
resolution

Temporal resolution expresses the temporal frequency at which a satellite acquires Earth observation images for a same 
area. Bimonthly temporal resolution (16 days) is appropriate for Earth observation images used to estimate land cover 
environmental determinants. For Earth observation images that are used to estimate microclimatic determinants, a 
temporal resolution that can serve to establish daily averages would be more appropriate. However, commonly used 
free-access Earth observation images with a high spatial resolution (e.g. Landsat-8 images) do not have this temporal 
resolution.

Unknown or low 
accuracy

Climate change projections indicate temperature increases of 1°C to over 5°C in high latitudes, from the 1950s (76,77). An 
uncertainty below 1°C would be appropriate for Earth observation images and their derivatives related to temperature. 
Metadata of numerous Earth observational image derivatives do not indicate their accuracy, and the accuracy within any 
given Earth observation image derivatives can be highly variable and is generally not available.

Incomplete land cover 
classes composition

An Earth observation image derivative of environmental determinants must contain all the land cover classes representing 
environmental determinants of interest. However, the composition of land cover classes of a given Earth observation 
image derivative depends on its producer and the objectives of creating it. And, there is not a specifically-developed 
Earth observation image derivative to estimate all the ECDs of every climate-related infectious disease.

Inappropriate temporal 
aggregation scale

Temporal aggregation scale is the time step that is used to aggregate multi-temporal data. The aggregation scales that 
are mostly used for Earth observation image derivatives are daily, weekly, monthly and annual averages. The temporal 
aggregation scale to be used will depend on the vectors of the disease. The lifecycle of MBD vectors is very short (a 
few days to a few months), compared with that of TBD vectors (several years). A weekly scale is more appropriate in the 
first case and an annual scale in the second. However, for some ECDs, there are no Earth observation image derivatives 
with the target temporal aggregation scales (e.g. annual accumulation of surface degree-days, derived from land surface 
temperature images).

Long periods between 
updates

An annual update frequency is generally appropriate for Earth observation image derivatives used to estimate 
environmental determinants. However, several of these products are not updated annually.

Short archiving period A relatively long archiving period—more than 15 or 30 years—may be necessary to study the evolution of infectious 
disease risks in the context of climate change. However, the archiving period of several Earth observation images and 
their derivatives is not long enough to study the impact of climate change on infectious diseases.

Incomplete geographic 
coverage

Risk assessment and risk mapping of infectious disease at borders often requires data covering several different 
administrative areas (e.g. Quebec/Ontario; Canada/United States).

Traditional methods 
and tools not adapted 
for massive Earth 
observation image data

An Earth observation image dataset covering a huge country like Canada, with a high spatial resolution, a high temporal 
resolution, frequent updates, and a long archiving period, will generate massive data for whose traditional methods and 
tools for Earth observation image data processing and management are not appropriate.

Table 3: Limitations associated with the use of Earth observation images and their derivatives 

Abbreviations: ECD, environmental and climatic determinants; MBD, mosquito-borne diseases; TBD, tick-borne diseases
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temporal resolutions. However, the accuracy of Earth observation 
image derivatives is often not well known.

The accuracy of a risk mapping depends largely on the quality 
of the data used to model the risk and to produce the risk map. 
Improvements are being developed to derive better quality Earth 
observation image derivatives. For example, Earth observation 
images with different characteristics (including spatial resolution 
and spectral bands) have been combined via image fusion or 
downscaling methods to produce value-added Earth observation 
image derivatives that can meet the quality criteria required to 
estimate ECDs. For example, when land surface temperature 
(LST) images from Landsat-8’s Thermal Infrared Sensor  
(100 m, 16 days) are combined with LST images from the 
Moderate Resolution Imaging Spectroradiometer (MODIS) 
(1000 m, 5 minutes), 8-day averages of LST images can be 
derived with a spatial resolution of 100 m (78). Using multisensor 
or multiproduct data combination, there are almost infinite 
possibilities for the estimation of ECDs and climate-related 
infectious diseases risk assessment and mapping in a context of 
rapid environmental change and increased climatic variability. 
Also, there is a need to apply artificial intelligence approaches to 
processing and analyzing the big data derived from combining 
data from multiple satellites. By doing so, it would be possible 
to create an Earth observation-informed operational framework 
for rapid risk assessment and mapping (EO-OFRAM) of climate-
related infectious diseases. Such a platform would be fully 
automated and have an easy-to-use user interface that integrates 
monitoring data and other contextual data, and could be used 
to answer questions, visualize responses on maps, and produce 
status reports to inform public health action.

The authors are currently working with their academic and 
governmental partners to develop improved microclimatic 
indicators, vector microhabitat indicators and a data integration 
and fusion system. These innovative tools will improve the 
accuracy of ECDs estimation and support dynamic multi-scale 
risk assessment and risk mapping of climate-related infectious 
diseases via the EO-OFRAM. Under the Innovative Solutions 
Canada Program, the Public Health Agency of Canada has 
issued a challenge to industry regarding the processing and 
analysis of big data (79). Better processing and analysis of 
big data, including the application of innovative machine 
learning techniques (a subset of artificial intelligence), will 
enable the better use of the large volume of data produced 
by Earth observation images. The application of an artificial 
intelligence-enabled EO-OFRAM in public health depends on 
its effectiveness in assessing risk in different environments and 
at different levels of decision-making (local, provincial/territorial 
and national). The creation of an EO-OFRAM aims to equip and 
optimize monitoring as well as control and prevention activities 
at these three levels of governance. The major challenges of such 
an initiative are funding, the participation of public health from 
different levels of government and the development of common 
standards. 

Conclusion

The risks associated with emerging climate-related infectious 
diseases are highly variable for different geographic regions 
over time. Earth observation images and their derivatives offer 
numerous advantages for characterizing this heterogeneity 
through the estimation of the environmental and climatic 
determinants and the mapping of climate-related infectious 
disease risks. With the development and application of improved 
approaches to process and analyze big data derived from Earth 
observation images, including machine learning, as well as the 
development of vector microhabitat and microclimatic indicators, 
the determinants derived from these Earth observation images 
offer some innovative tools to advance our risk modelling and 
mapping capacity to better support public health action again 
vector-borne diseases.
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