


# At-a-glance

# Prevalence of childhood cancer in Canada: an analysis using 5-year, 18-year and 25-year limited-duration prevalence from the CYP-C data tool

Katherine McKenzie, MSc (1); Lin Xie, MSc (1); Rana Khafagy, PharmD, MPH (1,2); Christina Ricci, MPH (1); Vera Grywacheski, MPH (1)

This article has been peer reviewed.

## **Abstract**

Survivors of childhood cancers can face life-long health risks. In this study we describe the prevalence of childhood cancer in Canada by type, geographic region, year, age group and sex, using publicly available data in the Cancer in Young People in Canada (CYP-C) data tool. By 2021, 4325 people aged less than 20 years who had received a cancer diagnosis within the previous 5 years were still alive. The age-standardized 5-year prevalence increased by 12% over the past 15 years. Leukemia was the most prevalent childhood cancer. The CYP-C data tool provides comprehensive and timely public health surveillance statistics to understand the burden of childhood cancer.

**Keywords:** neoplasms, prevalence, incidence, child, medical oncology, public health surveillance, survivors of childhood cancer

# Introduction

Capturing cancer trends in children and youth is essential for understanding cancer burden.<sup>1</sup> Although rare, childhood cancers significantly impact mortality<sup>2</sup> and morbidity<sup>3,4</sup> among young people. Between 925 and 1000 children aged less than 15 years are diagnosed with cancer every year in Canada, and as of 2020, 86% had survived for 5 years.<sup>2</sup> Childhood cancer remains the second leading cause of death among children in Canada aged 1 to 14 years.<sup>5</sup>

Understanding the prevalence of child-hood cancer is important for health system planning, resource allocation and assessing the impact of cancer. 6-8 Child-hood cancer survivors require life-long survivorship care because of therapy-related complications, known as late effects. 3 Clinical guidelines for screening and

management of late effects can improve long-term follow-up care and quality of life for childhood cancer survivors.<sup>3</sup>

The Cancer in Young People in Canada (CYP-C) program is a national, population-based surveillance system that serves to improve pediatric outcomes. The CYP-C program operates through a collaboration between the Public Health Agency of Canada (PHAC), the Canadian Partnership Against Cancer (CPAC) and the C<sup>17</sup> Council. Data are collected from 16 pediatric hematology, oncology and stem cell transplant programs in Canada. P<sup>10</sup>

The CYP-C data tool, hosted on the Government of Canada's Health Infobase (https://health-infobase.canada.ca/), is an online interactive tool that displays data on childhood cancer collected through the CYP-C surveillance system.<sup>2</sup> The data tool is the only pan-Canadian surveillance tool

At-a-glance by McKenzie K et al. in the HPCDP Journal licensed under a <u>Creative Commons</u> Attribution 4.0 International License



# Highlights

- By 2021, more than 1 in 1000 Canadians aged less than 20 years had received a cancer diagnosis before they were 15 years old.
- The age-standardized 5-year prevalence of Canadians surviving child-hood cancer increased by 12% between 2006 and 2021.
- The online Cancer in Young People in Canada (CYP-C) data tool provides timely, accurate and accessible data about childhood cancer, including prevalence estimates, which are important for allocating resources and assessing impact.
- The CYP-C data tool allows for new comparisons by cancer type, geographic region, age, sex and year to help understand the burden of childhood cancer.

dedicated to childhood cancer. It supports the Government of Canada's Open Data initiative by providing timely, accurate and accessible data. Open Data aims to provide Canadians access to data produced, collected and used across the federal government.<sup>11</sup>

In 2024, the CYP-C data tool was expanded to include prevalence estimates over time

#### Author references:

- 1. Centre for Surveillance and Applied Research, Public Health Agency of Canada, Ottawa, Ontario, Canada
- 2. Department of Pharmacy, The Hospital for Sick Children, Toronto, Ontario, Canada

Correspondence: Christina Ricci, Public Health Agency of Canada, 785 Carling Avenue, Ottawa, ON K1A 0K9; Tel: 613-799-0921; Email: christina.ricci@phac-aspc.gc.ca

by age group, sex, cancer type and geographic region. Prevalence estimates of childhood cancer were previously limited to specific provinces<sup>5,12-14</sup> or points in time<sup>6,15-17</sup> and were often not disaggregated by risk factors.<sup>6,13,15-17</sup> Estimates from studies of childhood cancer survivors in the United States<sup>4</sup> and the adult population in Canada<sup>15</sup> suggest that the prevalence of individuals with a history of cancer, including those in remission, has increased over time, likely because of improved survival.

This study aims to present prevalence estimates of childhood cancer in Canada, stratified by cancer type, geographic region and year using data shown in the CYP-C data tool. The prevalence estimates are based on cases diagnosed between 2001 and 2020 for 5-year limited-duration prevalence (LDP) and between 1992 and 2017 for the 5-, 18- and 25-year LDPs.

# Methods

#### Data sources

The aggregated incidence and prevalence data used in this study were downloaded in March 2024 as CSV text files from the publicly available CYP-C data tool, which gathers data from two sources.

The first source groups data from all children (aged less than 15 years) presenting at one of Canada's 16 pediatric hematology, oncology and stem cell transplant programs with a diagnosis listed in the International Classification of Childhood Cancer, Third Edition. 18,19 Each case registered in the CYP-C is followed for up to 5 years after diagnosis. The Pediatric Oncology Group of Ontario (POGO) also shares their population-based pediatric cancer registry with PHAC; Ontario data are obtained from the POGO registry to complete the CYP-C dataset. Detailed information about CYP-C and POGO data are published elsewhere. 2,10,20,21

The second source is the Canadian Cancer Registry (CCR), a population-based registry that includes data reported to Statistics Canada by provincial and territorial cancer registries. The CCR collects information about primary cancer diagnoses received by residents of Canada.<sup>22</sup> The Canadian Vital Statistics - Death (CVSD) database includes demographic and death information reported to Statistics Canada by provincial and territorial vital statistics

registries.<sup>23</sup> Statistics Canada creates and shares with PHAC a linked CCR and CVSD file (CCR–CVSD).

Population estimates for Canada and the provinces and territories are based on census data from Statistics Canada.<sup>24</sup>

#### Statistical analysis

The number of incident cases refers to the number of children with a new diagnosis of childhood cancer (i.e. received before age 15 years). LDP refers to the number of people diagnosed with a childhood cancer over a specific length of time (5, 18 or 25 years) who are alive on a given date. Person-based cancer prevalence counts the number of individuals, rather than the number of cancers diagnosed. Each statistic is based on a single cancer per person.

We estimated 5-year LDPs based on the number of cases in the CYP-C diagnosed between 1 January 2001 and 31 December 2020 who were alive on or after 1 January 2006. To calculate 18- and 25-year LDPs, we used linked CCR-CVSD data on children aged less than 15 years diagnosed between 1 January 1992 and 31 December 2017 and alive on 1 January 2018. Data from Quebec are not included in the CCR-CVSD. Detailed methods are described elsewhere.<sup>2</sup>

Using the counting method, we estimated prevalence from incidence and survival data. <sup>25,26</sup> For estimates using CYP-C data, prevalence calculations were completed in SEER\*Stat software. <sup>27</sup> We used the Kaplan-Meier method with monthly intervals, based on age at diagnosis, sex and cancer site, to adjust the estimate of the proportion of cases lost to follow-up. For estimates using CCR-CVSD data, individuals without a record of death were presumed to be alive by the end of each time frame.

Age-standardized prevalence proportions are presented per million and standardized to the 2011 Canadian population.

#### Suppression

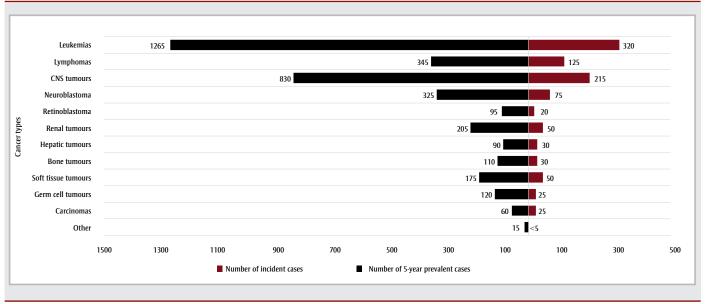
To ensure confidentiality, case counts of less than 5 are suppressed. In addition, case counts were randomly rounded either up or down to a multiple of 5. Agestandardized proportions use unrounded prevalent case counts.

#### Results

By 1 January 2021, 4325 people aged less than 20 years who had been diagnosed with childhood cancer in the previous 5 years were still alive.

The most frequently diagnosed childhood cancer type in 2020 was leukemia; there were 320 new cases versus 965 new cases of all cancers combined (Figure 1). Among the children aged less than 15 years living with and beyond cancer, the most common cancer diagnosis was leukemia (1265 5-year prevalent cases in 2020).

The age-standardized 5-year prevalence proportion in the CYP-C increased by 12% over the past 15 years, from 463 per million in 2006 to 524 per million in 2021. At 14.7% and 20.5%, respectively, this increase is most striking in the Prairies (comprising the provinces of Alberta, Saskatchewan and Manitoba) and in Ontario (Figure 2).


In 2018, 8615 individuals aged less than 20 years recorded in the CCR–CVSD had received a cancer diagnosis in their lifetime; the age-standardized 25-year LDP was 1365 per million. More than 60% of those diagnosed within the 25 years prior to 1 January 2018 were more than 15 years old. Because of their higher incidence,<sup>2</sup> males had a higher prevalence, though age distributions were similar in males and females (Figure 3).

#### Discussion

More than 1 in 1000 Canadians aged less than 20 years had received a cancer diagnosis before the age of 15 years. Prevalence combines the number of childhood cancer patients currently receiving treatment with cancer survivors who may need survivorship care and life-long monitoring. Understanding the size of this population is vital for cancer control planning, health care resource allocation and research, and assessing impact.

Our estimates are similar, although not directly comparable, to other estimates in Canada<sup>14-16,29</sup> and abroad.<sup>7,8,30</sup> For example, POGO<sup>14</sup> and Statistics Canada<sup>29</sup> found that by 2017 and 2018, respectively, 4700 and 4265 people living with and beyond cancer and aged less than 20 years had been diagnosed with childhood cancer in the previous 5 years. Age-standardized 5- and 20-year LDP proportions in Australia<sup>7</sup> and

FIGURE 1
Number of incident and 5-year prevalent cases, a children aged less than 15 years, by cancer type, b 2020, Canada



Data source: Cancer in Young People in Canada (CYP-C) data tool.<sup>2</sup>

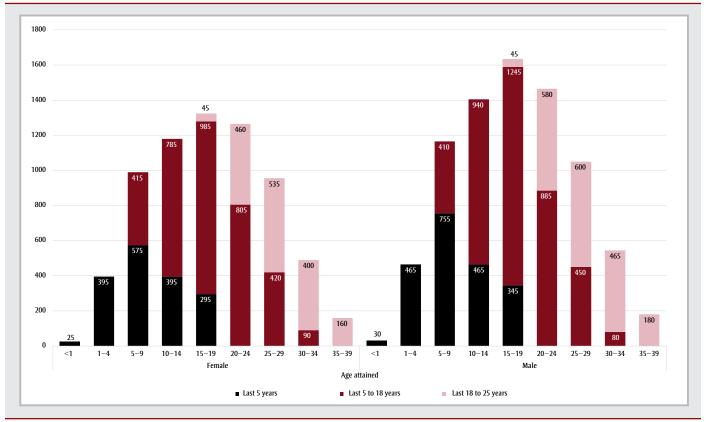
Abbreviation: CNS, central nervous system.

FIGURE 2
Age-standardized 5-year prevalence<sup>a</sup> per 1 000 000, children and youth aged less than 20 years, by province or geographic region<sup>b</sup>
and year, 1 January 2006 to 1 January 2021, Canada



Data source: Cancer in Young People in Canada (CYP-C) data tool.<sup>2</sup>

Abbreviation: B.C., British Columbia.


<sup>&</sup>lt;sup>a</sup> To ensure confidentiality, counts were randomly rounded to a multiple of 5 using an unbiased random-rounding scheme. Counts may not sum to the total because of this random rounding. Counts < 5 were suppressed.

b Classified according to the International Classification of Childhood Cancer, 3rd ed.19 into 12 main groups. CNS tumours include benign and malignant tumours.

 $<sup>^{\</sup>rm a}$  Age-standardized 5-year prevalence proportions are standardized to the 2011 Canadian population.

<sup>&</sup>lt;sup>b</sup> The Atlantic region comprises the provinces of New Brunswick, Prince Edward Island, Nova Scotia, and Newfoundland and Labrador. The Prairies comprise the provinces of Alberta, Saskatchewan and Manitoba. Data from Yukon, Northwest Territories and Nunavut are statistically unstable and are suppressed.

FIGURE 3 Number of 25-year prevalent cases,<sup>a</sup> by sex, attained age in years and time since diagnosis, 1 January 2018, Canada (excluding Quebec)



Data source: Canadian Cancer Registry – Canadian Vital Statistics Death database (CCR–CVSD). 22,23

<sup>a</sup> To ensure confidentiality, counts were randomly rounded to a multiple of 5 using an unbiased random-rounding scheme. Counts may not sum to the total because of this random rounding. Counts < 5 were suppressed.

the Netherlands,<sup>8</sup> respectively, followed a similar trend to our 5- and 25-year LDPs.

The CYP-C data tool is valuable as other Canadian estimates are not reported by pediatric cancer type or by geographical region and age at diagnosis. 14-16,29 Proportions are similar across Canada, and the age-standardized prevalence has increased slightly over the last 15 years. Leukemia contributed to one-third of all incident and prevalent cases.

Having accessible, accurate and timely public health data is crucial for Canada.<sup>31</sup> The CYP-C data tool can be used to share childhood cancer information with patients and their families, health care professionals, policy makers, advocates and researchers.

#### Strengths and limitations

The CYP-C data tool includes Canadian childhood cancer data from the two most comprehensive and timely sources. These data allow for new comparisons by cancer type, geographic region, age group, sex

and time, providing the ability to look beyond incidence to understand the burden of childhood cancer.

There are some limitations. The data tool only includes LDP data of Canadians aged less than 40 years with a history of childhood cancer as the CCR does not capture data before 1992. Childhood cancer survivors aged 40 years or older are also at risk for late effects of cancer treatment.<sup>28</sup> Future work will aim to include longer follow-up and complete prevalence across the lifespan to capture the full burden of childhood cancer.

When using data from the CCR, we assumed individuals to be living if there was no associated record of death. However, deaths that occur outside of Canada are not included, which could result in slightly overestimated prevalence. Also, all cases in Quebec were excluded because data sharing agreements prohibit data release.

The data tool employs suppression and unbiased random rounding to maintain

privacy in public datasets.<sup>32</sup> These techniques have a greater impact on small populations (e.g. small provinces or territories), which could mask important geographic variations and changes in rates over time.<sup>33</sup>

### **Conclusion**

In partnership with the CPAC and the C<sup>17</sup> Council, PHAC recently included prevalence data of individuals living with or beyond childhood cancer in the CYP-C data tool. This study characterizes the population of childhood cancer patients and survivors. The aim is to add more data, such as socioeconomic status, in order to improve public health surveillance in this population in the future.

# **Acknowledgements**

The contributions of study participants, participating pediatric oncology centres, members of the CYP-C management and steering committees, POGO and its five hospital partners, the C<sup>17</sup> Council, CPAC

and Statistics Canada are gratefully acknowledged.

We would also like to acknowledge the contributions of several individuals. We thank Jay Onysko from the Applied Research Division at PHAC and Mylene Frechette, Jaskiran Kaur, Nicole Winch and Anjali Behal from the Surveillance Systems and Data Management Division at PHAC for their contributions to the management of CYP-C and their thorough understanding of the data. As well, we would like to acknowledge Owen Wesley Smith-Lépine from the same division, who is responsible for the development and maintenance of the CYP-C data tool hosted on Health Infobase. Lastly, we would like to acknowledge Paul Gibson (McMaster Children's Hospital; POGO), Randy Barber (C17 Council) and Miranda Fidler-Benaoudia (Alberta Health Services), whose knowledge and expertise of the issues experienced by children and youth with cancer in Canada helped guide the analysis of the data included in the CYP-C data tool.

# **Funding**

None.

# **Conflicts of interest**

None.

# Authors' contributions and statement

KM: Conceptualization, formal analysis, methodology, writing—original draft.

LX: Conceptualization, formal analysis, methodology, writing—review and editing.

RK: Conceptualization, methodology, validation, writing—original draft.

CR: Conceptualization, formal analysis, methodology, writing—review and editing.

VG: Conceptualization, methodology, writing—review and editing.

All authors approved the final paper.

The content and views expressed in this article are those of the authors and do not necessarily reflect those of the Government of Canada.

## References

- de Paula Silva N, Gini A, Dolya A, Colombet M, Soerjomataram I, Youlden D, et al. Prevalence of childhood cancer survivors in Europe: a scoping review. EJC Paediatr Oncol. 2024;3: 100155. <a href="https://doi.org/10.1016/j.ejcped.2024.100155">https://doi.org/10.1016/j.ejcped.2024.100155</a>
- Centre for Surveillance and Applied Research, Public Health Agency of Canada. Cancer in Young People in Canada data tool [Internet]. Ottawa (ON): Government of Canada; 2024 [cited 2024 Feb 28]. Available from: https://health-infobase.canada.ca/data -tools/cypc/
- 3. Landier W, Skinner R, Wallace WH, Hjorth L, Mulder RL, Wong FL, et al. Surveillance for late effects in child-hood cancer survivors. J Clin Oncol. 2018;36(21):2216-22. <a href="https://doi.org/10.1200/JCO.2017.77.0180">https://doi.org/10.1200/JCO.2017.77.0180</a>
- Phillips SM, Padgett LS, Leisenring WM, Stratton KK, Bishop K, Krull KR, et al. Survivors of childhood cancer in the United States: prevalence and burden of morbidity. Cancer Epidemiol Biomarkers Prev. 2015;24(4):653-63. https://doi.org/10.1158/1055-9965.EPI -14-1418
- Statistics Canada. Leading causes of death, total population, by age group. Table 13-10-0394-01 [Internet]. Ottawa (ON): Statistics Canada; 2024 Dec 04 [cited 2025 Feb 13]. <a href="https://doi.org/10.25318/1310039401-eng">https://doi.org/10.25318/1310039401-eng</a>
- 6. Surveillance Program at Ontario Health.
  Ontario Cancer Statistics 2022 [Internet]. Toronto (ON): Cancer Care
  Ontario; 2022 [cited 2024 Mar 12].
  Available from: cancercareontario.ca
  /en/data-research/view-data/statistical
  -reports/ontario-cancer-statistics-2022
- Youlden DR, Steliarova-Foucher E, Gini A, Silva NP, Aitken JF. The growing prevalence of childhood cancer survivors in Australia. Pediatr Blood Cancer. 2023;70(7):e30383. https://doi.org/10.1002/pbc.30383
- 8. Gini A, Colombet M, de Paula Silva N, Visser O, Youlden D, Soerjomataram I, et al. A new method of estimating

- prevalence of childhood cancer survivors (POCCS): example of the 20-year prevalence in The Netherlands. Int J Epidemiol. 2023;52(6):1898-906. <a href="https://doi.org/10.1093/ije/dyad124">https://doi.org/10.1093/ije/dyad124</a>
- 9. Public Health Agency of Canada. The Cancer in Young People in Canada program [Internet]. Ottawa (ON): Government of Canada; [cited 2023 Jun 27]. Available from: https://www.canada.ca/en/public-health/services/chronic-diseases/cancer/cancer-young-people-canada-program.html
- Mitra D, Hutchings K, Shaw A, Barber R, Sung L, Bernstein M, et al. The Cancer in Young People in Canada surveillance system. Health Promot Chronic Dis Prev Can. 2015;35(4):73-6. <a href="https://doi.org/10.24095/hpcdp.35">https://doi.org/10.24095/hpcdp.35</a>
   4.02
- 11. Canada's Action Plan on Open Government 2014-16 [Internet]. Ottawa (ON): Government of Canada; [modified 2019 Jun 27; cited 2025 Jun 27]. [Catalogue No.: BT22-130/2014E-PDF]. Available from: <a href="https://open.canada.ca/en/content/canadas-action-plan-open-government-2014-16">https://open.canada.ca/en/content/canadas-action-plan-open-government-2014-16</a>.
- 12. Moskalewicz AA. Projecting the future prevalence of childhood cancer in Ontario using microsimulation modeling [master's thesis]. Toronto (ON): University of Toronto; 2022 Nov. Available from: <a href="https://utoronto.scholaris.ca/items/35flecaa-eble-43be-b5d3-7458b09729f0">https://utoronto.scholaris.ca/items/35flecaa-eble-43be-b5d3-7458b09729f0</a>
- 13. BC Cancer. Cancer statistics online dashboard [Internet]. Vancouver (BC): BC Cancer; 2023 [cited 2023 Dec 28]. Available from: <a href="http://www.bccancer.bc.ca/health-info/disease-system-statistics/cancer-statistics-online-dashboard">http://www.bccancer.bc.ca/health-info/disease-system-statistics/cancer-statistics-online-dashboard</a>
- 14. Pediatric Oncology Group of Ontario. Childhood Cancer in Ontario: the 2020 POGO surveillance report [Internet]. Toronto (ON): POGO; 2020 [cited 2024 Jan 12]. Available from: <a href="https://www.pogo.ca/research-data/data-reports/2020-pogo-surveillance-report/">https://www.pogo.ca/research-data/data-reports/2020-pogo-surveillance-report/</a>

- 15. Brenner D, Poirier A, Demers A, Ellison L, Finley C, Fitzgerald N, et al.; Canadian Cancer Statistics Advisory Committee. Canadian Cancer Statistics: a 2022 special report on cancer prevalence [Internet]. Toronto (ON): Canadian Cancer Society; 2022 [cited 2023 Jun 29]. Available from: cancer.ca/Canadian-Cancer-Statistics-2022-EN
- 16. Canadian Cancer Statistics Dashboard.
  Prevalence: Person-based prevalence
  for selected cancers by prevalence
  duration and sex [Internet]. Calgary
  (AB): Canadian Cancer Statistics
  Dashboard; 2023 [cited 2024 Jan 12].
  Available from: <a href="https://cancerstats.ca/Prevalence">https://cancerstats.ca/Prevalence</a>
- 17. International Agency for Research on Cancer. Cancer today: estimated number of prevalent cases, both sexes, age [0-14], in 2022 [Internet]. Lyon (FR): IARC: 2024 [cited 2024 Mar 18]. Available from: <a href="https://gco.iarc.fr/today/en/dataviz/bars-prevalence?mode">https://gco.iarc.fr/today/en/dataviz/bars-prevalence?mode</a> = population&group\_populations = 0&age\_end = 2&types = 2&key = total
- 18. Steliarova-Foucher E, Colombet M, Ries LA, Moreno F, Dolya A, Bray F, et al. International incidence of child-hood cancer, 2001-10: a population-based registry study. Lancet Oncol. 2017;18(6):719-31. <a href="https://doi.org/10.1016/S1470-2045(17)30186-9">https://doi.org/10.1016/S1470-2045(17)30186-9</a>
- Surveillance, Epidemiology, and End Results Program. International classification of childhood cancer (ICCC) [Internet]. Bethesda (MD): National Cancer Institute; 2022 [cited 2023 Jun 26]. Available from: <a href="https://seer.cancer.gov/iccc/index.html">https://seer.cancer.gov/iccc/index.html</a>
- Mitra D, Xie L, Onysko J; Cancer in Young People in Canada (CYP-C) program. Cancer in young people in Canada: a report from the Enhanced Childhood Cancer Surveillance System [Internet]. Ottawa (ON): Public Health Agency of Canada; 2017 [cited 2023 Jun 26]. [Catalogue No.: HP35-93/2017E-PDF]. Available from: <a href="https://www.canada.ca/en/health-canada/services/publications/science-research-data/cancer-young-people-canada-surveillance-2017.html">https://www.canada.ca/en/health-canada/services/publications/science-research-data/cancer-young-people-canada-surveillance-2017.html</a>

- 21. Pediatric Oncology Group of Ontario. POGONIS Childhood cancer database [Internet]. Toronto (ON): POGO; 2022 [cited 2023 Jun 26]. Available from: <a href="https://www.pogo.ca/research-data/pogonis-childhood-cancer-database/">https://www.pogo.ca/research-data/pogonis-childhood-cancer-database/</a>
- 22. Statistics Canada. Canadian Cancer Registry (CCR) [Internet]. Ottawa (ON): Statistics Canada; 2023 [cited 2023 Jun 26]. Available from: <a href="https://www23.statcan.gc.ca/imdb/p2SV.pl">https://www23.statcan.gc.ca/imdb/p2SV.pl</a> ?Function = getSurvey&SDDS = 3207
- 24. Statistics Canada. Population estimates on July 1, by age and sex. Table 17-10-0005-01 [Internet]. Ottawa (ON): Statistics Canada; 2022 [cited 2023 Jul 18]. <a href="https://doi.org/10.25318/1710000501-eng">https://doi.org/10.25318/1710000501-eng</a>
- Feldman AR, Kessler L, Myers MH, Naughton D. The prevalence of cancer. N Engl J Med. 1986;315(22):1394-7. <a href="https://doi.org/10.1056/nejm198611273152206">https://doi.org/10.1056/nejm198611273152206</a>
- 26. Gail MH, Kessler L, Midthune D, Scoppa S. Two approaches for estimating disease prevalence from population-based registries of incidence and total mortality. Biometrics. 1999;55(4): 1137-44. https://doi.org/10.1111/j.0006-341x.1999.01137.x
- 27. Surveillance, Epidemiology, and End Results Program, SEER\*Stat Software [software]. Bethesda (MD): National Cancer Institute; [cited 2023 Jun 26]. Available from: <a href="https://seer.cancer.gov/seerstat/index.html">https://seer.cancer.gov/seerstat/index.html</a>
- Signorelli C, Wakefield CE, Fardell JE, Wallace WH, Robertson EG, McLoone JK, et al. The impact of long-term follow-up care for childhood cancer survivors: a systematic review. Crit Rev Oncol Hematol. 2017;114:131-8. <a href="https://doi.org/10.1016/j.critrevonc.2017.04">https://doi.org/10.1016/j.critrevonc.2017.04</a>

- 29. Statistics Canada. Number of prevalent cases and prevalence proportions of primary cancer, by prevalence duration, cancer type, attained age group and sex: Table 13-10-0751-01 [Internet]. Ottawa (ON): Statistics Canada; 2022 [cited 2024 Jan 12]. https://doi.org/10.25318/1310075101-eng
- 30. Johannesen TB, Langmark F, Wesenberg F, Lote K. Prevalence of Norwegian patients diagnosed with childhood cancer, their working ability and need of health insurance benefits. Acta Oncol. 2007;46(1):60-6. https://doi.org/10.1080/02841860600774026
- 31. Huston P, Edge VL, Bernier E. Reaping the benefits of Open Data in public health. Can Commun Dis Rep. 2019;45(11):252-6. https://doi.org/10.14745/ccdr.v45i10a01
- 32. Matthews GJ, Harel O. Data confidentiality: a review of methods for statistical disclosure limitation and methods for assessing privacy. Statist Surv. 2011; 5:1-29. https://doi.org/10.1214/11-SS074
- 33. Bowen CM, Snoke J. Do no harm: applying equity awareness in data privacy methods [Internet]. Urban Institute; 2023 Mar [cited 2024 Dec 16]. Available from: <a href="https://www.urban.org/research/publication/do-no-harm-guide-applying-equity-awareness-data-privacy-methods">https://www.urban.org/research/publication/do-no-harm-guide-applying-equity-awareness-data-privacy-methods</a>