
M. MacPherson, MBA (1, 2); M. de Groh, PhD (1); L. Loukine, MSc (3); D. Prud’homme, MD (4, 5); L. Dubois, PhD (6)

This article has been peer reviewed.

Abstract

Introduction: We investigated the prevalence of metabolic syndrome (MetS) and its risk factors, and the influence of socioeconomic status, in Canadian children and adolescents.

Methods: Canadian Health Measures Survey cycle 1 (2007–2009) and cycle 2 (2009–2011) respondents aged 10 to 18 years who provided fasting blood samples were included (n = 1228). The International Diabetes Federation (IDF) consensus definition for children and adolescents (10–15 years) and worldwide adult definition (≥ 16 years) were used to diagnose MetS. Prevalence of MetS and its risk factors were calculated and differences by socioeconomic status were examined using χ² tests.

Results: The prevalence of MetS was 2.1%. One-third (37.7%) of participants had at least one risk factor, with the most prevalent being abdominal obesity (21.6%), low HDL-C (19.1%) and elevated triglyceride levels (7.9%). This combination of abdominal obesity, low HDL-C and elevated triglyceride levels accounted for 61.5% of MetS cases. Participants from households with the highest income adequacy and educational attainment levels had the lowest prevalence of one or more MetS risk factors, abdominal obesity and low HDL-C.

Conclusion: The prevalence of MetS (2.1%) was lower than previously reported in Canada (3.5%) and the USA (4.2%–9.2%), potentially due to the strict application of the IDF criteria for studying MetS. One-third of Canadian children and adolescents have at least one risk factor for MetS. Given that the risk for MetS increases with age, these prevalence estimates, coupled with a national obesity prevalence of almost 10% among youth, point to a growing risk of MetS and other chronic diseases for Canadian youth.

Keywords: Canadian Health Measures Survey, metabolic syndrome, health surveys, cardiometabolic risk factors, prevalence, adolescent, child

Introduction

Chronic diseases constitute the leading cause of preventable death in Canada and the world as well as the largest avoidable burden on the public health care system.1 The metabolic syndrome (MetS) is a constellation of cardiometabolic risk factors that are predictive for chronic disease and all-cause mortality.2-4 It is estimated that risk of cardiovascular disease (CVD) doubles and the risk of type 2 diabetes increases fivefold if MetS is present.3-6 MetS is characterized by the presence of different combinations of risk factors including obesity, hypertension, elevated fasting triglycerides, insulin resistance, low total cholesterol, high low-density lipoprotein cholesterol, low high-density lipoprotein cholesterol (HDL-C), elevated apolipoprotein B, elevated C-reactive protein and elevated homocysteine.7-9 These clinical features of MetS, if present together, tend to suggest a common etiology; the proposed mechanisms underlying MetS and its influence on health outcomes are discussed elsewhere.7,10,11

The global prevalence of obesity and diabetes has increased dramatically in the past quarter century.12 This increase, in

Key findings

- Having metabolic syndrome (MetS) increases the risk for chronic disease—cardiovascular disease by two and type 2 diabetes by five.
- Only 2.1% of Canadian youth have MetS. However, one-third of Canadian youth have one or more risk factors for MetS.
- The biggest risk factor for MetS is abdominal obesity. As more youth are becoming obese, MetS will probably increase among Canadian youth.
- Risk of MetS increases with age. As a result, the risk for chronic diseases will probably increase as the Canadian population ages.
- Youth who live in better off or better educated households have the lowest risk for MetS.

Author references:

1. Social Determinants and Science Integration Directorate, Public Health Agency of Canada, Ottawa, Ontario, Canada
2. Faculty of Graduate and Postdoctoral Studies, University of Ottawa, Ottawa, Ontario, Canada
3. Centre for Chronic Disease Prevention and Control, Public Health Agency of Canada, Ottawa, Ontario, Canada
4. Institut de recherche de l’Hôpital Montfort, Ottawa, Ontario, Canada
5. Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
6. Department of Epidemiology and Community Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada

Correspondence: Miranda MacPherson, Social Determinants and Science Integration Directorate, Public Health Agency of Canada, 916B-785 Carling Avenue, Ottawa, ON K1A 0K9; Tel.: 613-668-4018; Fax: 613-960-0921; Email: miranda.macpherson@phac-aspc.gc.ca
Metabolic Syndrome as a single, universally accepted tool. The IDF defines MetS as the presence of abdominal obesity (measured by waist circumference) and 2 or more of the following risk factors: low levels of HDL-C, hypertension, elevated fasting triglyceride levels and elevated glucose concentration. Before the IDF consensus definition, the most recognized definitions were criteria established by the World Health Organization, the European Group for the Study of Insulin Resistance, and the National Cholesterol Education Program Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) (NCEP ATP III).

Diagnosing MetS among children and adolescents proves particularly challenging given the difficulty in establishing accurate, meaningful and harmonized criteria for this population. Consequently, prevalence estimates of MetS among children and youth vary greatly depending on the adopted definition. In 2007, the IDF released their Consensus Definition of the Metabolic Syndrome in Children and Adolescents. This criterion provides an age- and sex-specific definition for youth aged 10 to 15 years. The IDF definition further stipulates that the worldwide adult definition of MetS should be applied for individuals aged 16 years or older and that MetS should not be diagnosed in children less than 10 years old.

The main objectives of this study were to investigate the prevalence of MetS and its risk factors, and the influence of SES on these risk factors, in Canadian children and adolescents (10–18 years) using nationally representative data from the Canadian Health Measures Survey (CHMS). This study builds upon an earlier national analysis of Canadian youth

- by including those aged 10 and 11 years;
- by calculating the prevalence of one or more risk factors for MetS among youth;
- by examining the patterns of risk presentation; and
- by using data from two cycles of the CHMS.

This is the first national study to strictly apply the IDF consensus definition of MetS in children and adolescents, the most current and universally accepted definition of MetS for youth; and to use Canadian age- and sex-specific waist circumference reference data to determine abdominal obesity in Canadian children and youth.

Methods

Data source

The CHMS is a nationally representative survey designed to collect information on the health of Canadians. Conducted by Statistics Canada, the CHMS consists of an in-home interview and a physical assessment conducted at a mobile examination centre. The interview collects demographic, socioeconomic, family history and general health information. The physical assessment includes measures of anthropometry, spirometry, blood pressure, fitness and oral health and involves collecting biological specimens. The survey covered Canadians living at home in the 10 provinces and 3 territories, although people living on reserves and other Aboriginal settlements, in institutions and in certain remote regions as well as full-time members of the Canadian Forces were excluded. The CHMS cycle 1 (2007–2009) collected data on people aged 6 to 79 years, with cycle 2 (2009–2011) expanding to cover those aged 3 to 79 years. In total, this represents 96.3% of the Canadian population.

The CHMS produces reliable estimates at the national level by age group and sex through a multistage sampling strategy. The selection of collection sites was informed by the Labour Force Survey sampling frame. A multitude of practices were used to minimize non-response; the combined response rate for home and clinic visits was 51.7% for cycle 1 and 55.5% for cycle 2. Statistics Canada calculated the sampling weights by multiplying the selection weights for collection sites by the selection weights for dwellings, followed by a series of adjustments for non-response at the initial, interview and MEC stage.

Study population

All 10- to 18-year-old CHMS respondents who provided fasting blood samples for
cycle 1 (2007–2009) or cycle 2 (2009–2011) were included (n = 1228). No participants were pregnant. Sample weights specific to the fasting subgroup were provided by Statistics Canada to ensure appropriate representativeness at the population level.

Criteria for diagnosing MetS

We applied the IDF consensus definition of MetS for children and adolescents to participants aged 10 to 18 years. The IDF consensus definition for children and adolescents defines MetS as having abdominal obesity (waist circumference equal or greater than the 90th percentile by age and sex) and the presence of two or more of the following clinical features: elevated triglycerides (≥ 1.7 mmol/L); low HDL-C (< 1.03 mmol/L); high blood pressure (systolic ≥ 130 mm Hg and/or diastolic ≥ 85 mm Hg and/or diagnosis of hypertension); and elevated glucose (≥ 5.6 mmol/L and/or diagnosis of type 2 diabetes).

The IDF worldwide adult criteria define MetS as having abdominal obesity (waist circumference equal or greater than the 90th percentile by age and sex) and the presence of two or more of the following clinical features: elevated triglycerides (≥ 1.7 mmol/L); low HDL-C (< 1.03 mmol/L); high blood pressure (systolic ≥ 130 mm Hg and/or diastolic ≥ 85 mm Hg and/or diagnosis of hypertension); and elevated glucose (≥ 5.6 mmol/L and/or diagnosis of type 2 diabetes).

The IDF worldwide adult criteria define MetS as having abdominal obesity (waist circumference equal or greater than the 90th percentile by age and sex) and the presence of two or more of the following clinical features: elevated triglycerides (≥ 1.7 mmol/L); low HDL-C (< 1.03 mmol/L); high blood pressure (systolic ≥ 130 mm Hg and/or diastolic ≥ 85 mm Hg and/or diagnosis of hypertension); and elevated glucose (≥ 5.6 mmol/L and/or diagnosis of type 2 diabetes).

Variables for assessing demographic and socioeconomic status

A respondent’s demographic and SES was assessed through the variables of household educational attainment, household income adequacy, Aboriginal status, and immigrant status. The use of household education and household income variables in this study is consistent with previous studies examining the relationship between SES and MetS. Education is the most frequently used indicator of SES in epidemiological studies and, among indicators of SES, it tends to have the strongest and most consistent relationship with cardiovascular health. Household income is another well-established SES indicator and determinant of health. Statistics Canada calculated income adequacy by classifying each participant into categories based on total household income from all sources and the number of people living in the household.

Prevalence of MetS

To allow for greater statistical power, we reclassified both the household educational attainment and income adequacy variables from 4 categories into 3. For income adequacy, we combined the “lowest income” and “lower middle income” categories, resulting in “lowest and lower middle,” “middle” and “highest” categories. For household educational attainment, we combined the “less than secondary school graduation” and “secondary school graduation” categories, resulting in “secondary school graduation or less,” “some postsecondary” and “postsecondary graduation” categories.

Statistical analysis

We conducted statistical analyses using SAS version 9.3 (SAS Institute Inc., Cary, NC, US) for data manipulation and variance estimation using the bootstrap method. The prevalence of MetS and each risk factor were estimated and expressed as a frequency and a percentage with a 95% confidence interval (CI). χ² tests were used to examine differences in MetS, and each risk factor by gender, Aboriginal status, immigrant status, household education and income adequacy. The analyses were conducted using weighting and bootstrapping. Statistical significance was set at a p value of less than .05.

Results

Description of study sample

To be able to evaluate the criteria for MetS, of the original sample of child and adolescent respondents aged 10 to 18 years, we included in our study only those participants who provided fasting blood samples. This resulted in a final sample of 1228 participants. The sample included slightly more males (51.5%) than females (48.5%).

Table 1 shows an overview of the sample by demographic and SES.

Prevalence of individual risk factors

Over one-third (37.7%; 95% CI: 33.8–41.6) of children and adolescents had at least one of the clinical features of MetS (1 or more risk factors) (Table 2). This small number of participants with MetS prevented accurate disaggregation by sex, age or SES.

Pattern of risk factor combinations

The most prevalent single risk factors were abdominal obesity (10.7%), low HDL-C (9.8%) and elevated triglycerides (2.7%) (Table 3). The most prevalent distinct combinations of two risk factors were abdominal obesity coupled with low HDL-C (5.1%) and abdominal obesity and elevated triglycerides (1.5%). Among distinct combinations of three risk factors, the most prevalent combination was abdominal obesity, low HDL-C...
and elevated triglycerides (1.3%). This combination of three risk factors accounted for 61.5% of MetS cases (Table 3).

Associations between SES (household educational attainment and income adequacy) and risk factors

Participants from families with the highest incomes had the lowest percentage of one or more risk factor(s) (35.3%; 95% CI: 31.0–39.6), abdominal obesity (19.8%; 95% CI: 14.6–25.0) and low HDL-C (17.5%; 95% CI: 14.8–20.2) versus those from households with some postsecondary education or secondary school graduation or less. Due to small cell sizes, the results could not be disaggregated by Aboriginal or immigrant status.

Discussion

The prevalence for MetS among children and adolescents (2.1%) was lower than previously reported in Canada (3.5%) and the USA (4.2%–9.2%). Assuming our sample is representative of the Canadian population, this prevalence of 2.1% would be equivalent to about 64 832 children and adolescents. The prevalence of one or more risk factors (37.7%) among children and adolescents was also lower than reported in the USA (42%–63%). In comparison to earlier national estimates on Canadian youth, our study’s lower prevalence may be attributed to our applying the IDF definition of MetS, which has slightly more stringent criteria, including the required presence of abdominal obesity. Furthermore, MetS is known to increase with age and our sample included younger ages (10–11 years) and had greater numbers of younger participants (n = 356 for 10–11 years) than older, adolescent participants (n = 231 for 17–18 years).

The lower prevalence estimates we found compared to those in the USA may be attributable to several factors. Obese youth have a higher prevalence of MetS than do those of normal weight and the prevalence of obesity among youth is higher in the USA than in Canada. The prevalence estimates in the USA were calculated using data from the National Health and Nutrition Examination Survey with variation in the periods of data collection (ranging from 1988–2006), the MetS definition (all variations of ATP III) and criteria for abdominal obesity. Our study followed a strict application of the IDF MetS definition including age- and sex-specific cut-offs. Finally, our study does not include Canadian residents living on reserve or in other Aboriginal settlements, populations shown to have a higher prevalence of MetS.

Despite the overall low prevalence of MetS, note that one-third (37.7%) of study participants had at least one risk factor for MetS. This finding, coupled with a prevalence of obesity of almost 10% among Canadian children and youth, is disconcerting as the probability of MetS also increases with obesity. Further, given that age is one of the most significant predictors for MetS, it is reasonable to assume that children and adolescents with one or more risk factors are more susceptible to MetS and, correspondingly, chronic disease as adults. Evidence indicates that, in the long term, adults with MetS have an elevated risk of CVD-attributed mortality, although a moderate-to-high level of cardiorespiratory fitness has been shown to mitigate some of this risk.
Our findings support the conclusions of previous studies that abdominal obesity, low HDL-C and elevated triglycerides are the most prevalent risk factors of MetS among children and adolescents; in fact, this combination accounted for 61.5% of all MetS cases in this study. The most prevalent risk factor was abdominal obesity (21.6%), which may be attributed to over one-quarter of Canadian youth being overweight or obese. The IDF considers abdominal obesity as a prerequisite for MetS given that it is associated with an increased risk of cardiovascular disease and an independent predictor of insulin resistance, lipid levels and high blood pressure. Our study defined abdominal obesity using age- and sex-specific reference data established from the 1981 Canadian Fitness Survey (90th percentile). Domestic prevalence estimates of obesity among youth have almost doubled in the past 25 years, meaning that these predefined cut-offs represent norms for the Canadian population before this dramatic increase in body fat.

Consistent with previous studies on youth, hypertension is not highly prevalent in the early onset of this syndrome.

Participants from families in the highest income adequacy and household educational attainment groups had the lowest prevalence of one or more risk factors, abdominal obesity and low HDL-C, which is consistent with earlier findings between SES and MetS risk factors. For abdominal obesity, a dose–response relationship was present for household education. The relationship between household education and prevalence of risk factors appeared to be more sensitive than household income, which is also consistent with previous findings.

TABLE 2
Prevalence of metabolic syndrome and risk factors, 10–18 years (n = 1228)

<table>
<thead>
<tr>
<th>Condition</th>
<th>Total Sample</th>
<th>Frequency, n</th>
<th>% (95% CI)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>MetS</td>
<td>25</td>
<td>2.1 (0.8–3.3)</td>
<td>0.29<sup>b</sup></td>
<td>—</td>
</tr>
<tr>
<td>Number of risk factors</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥ 2</td>
<td>123</td>
<td>10.8 (7.4–14.2)</td>
<td>0.15</td>
<td>—</td>
</tr>
<tr>
<td>≥ 1</td>
<td>420</td>
<td>37.7 (33.8–41.6)</td>
<td>0.05</td>
<td>—</td>
</tr>
<tr>
<td>Abdominal obesity</td>
<td>240</td>
<td>21.6 (16.6–26.7)</td>
<td>0.11</td>
<td>—</td>
</tr>
<tr>
<td>Low HDL–C</td>
<td>218</td>
<td>19.1 (16.6–21.8)</td>
<td>0.06</td>
<td>—</td>
</tr>
<tr>
<td>Elevated triglycerides</td>
<td>82</td>
<td>7.9 (4.8–11.0)</td>
<td>0.19<sup>b</sup></td>
<td>—</td>
</tr>
<tr>
<td>Elevated glucose</td>
<td>22</td>
<td>1.7 (0.7–2.8)</td>
<td>0.30<sup>b</sup></td>
<td>—</td>
</tr>
</tbody>
</table>

^a These figures are based on weighted data.

^b These figures are published with reservation as 0.16 ≤ CV ≥ 0.33.

Note: Blank cells (—) indicate that the results cannot be published because of a cell size n < 10 and/or a CV ≥ 0.3306. The prevalence of elevated BP was too low to provide an accurate statistical estimate.

Our study defined abdominal obesity using age- and sex-specific reference data established from the 1981 Canadian Fitness Survey (90th percentile). Domestic prevalence estimates of obesity among youth have almost doubled in the past 25 years, meaning that these predefined cut-offs represent norms for the Canadian population before this dramatic increase in body fat.

Participants from families in the highest income adequacy and household educational attainment groups had the lowest prevalence of one or more risk factors, abdominal obesity and low HDL-C, which is consistent with earlier findings between SES and MetS risk factors. For abdominal obesity, a dose–response relationship was present for household education. The relationship between household education and prevalence of risk factors appeared to be more sensitive than household income, which is also consistent with previous findings.

Further, household education is considered...
to be more stable, and less influenced by health status, than household income over the life course. More broadly, participants from households with lower education and income levels are more likely to experience unfavourable social, physical and economic environments that can contribute to poorer health outcomes, including a higher rate of mortality attributed to CVDs. These results point to a need for interventions, including public policy, public education, research and medical care, that focus on mitigating the impact of lower levels of education and income on health outcomes. Research focussed on elucidating the causal pathways through which SES influences the risk for MetS and CVDs throughout the life course would be useful in designing effective, targeted interventions.

Future studies using more cycles of CHMS data may have the statistical power with which to examine MetS and its risk factors in Canadian children and adolescents in greater detail. The sex differences in MetS in relation to SES should be examined to better understand the sex-specific ways in which unfavourable socioeconomic conditions affect MetS outcomes. Further, regression analyses are needed to comprehensively examine the relationship between MetS, its risk factors, behaviour such as physical activity and sleep, and SES.

Strengths

This is the first national study to apply the IDF consensus definition of MetS to children and adolescents and to use Canadian age- and sex-specific waist circumference reference data for determining abdominal obesity to Canadian children and youth. Strictly applying the IDF criteria for studying MetS at the population level in Canada will allow for more accurate comparisons with future studies on MetS in children and adolescents.

This study was conducted using government survey data that is both high quality and representative of 96% of Canadians.

Limitations

Descriptive statistics was the only method we could use to examine MetS using this dataset of Canadian children and adolescents because the sample size was small; only those participants from whom fasting blood samples were taken were included. The sample size and low prevalence of MetS did not allow for an analysis of the relationship between each risk factor and MetS. The small sample size also prohibited a robust statistical analysis of the influence of demographic and SES variables on MetS and allowed only limited analysis of the influence of these variables on risk factors with no distinction by sex. It was not feasible to disaggregate by sex, age, Aboriginal status or immigrant status. Furthermore, the cross-sectional design of the CHMS limits inference about causal pathways underlying the observed relationships. Consequently, the study focussed on the prevalence of each MetS risk factor.

Nonetheless, the study results improve the understanding of the current landscape of cardiometabolic risks among Canadian children.

Conclusions

By investigating the prevalence of MetS and its risk factors among Canadian children and adolescents, this study highlights important health and socioeconomic considerations for Canada’s child and adolescent population. The results affirm previous findings of a low prevalence of MetS among youth. The results also highlight important indicators of future health risk among Canadian youth by showing that one in three have at least one risk factor for MetS, one in five have abdominal obesity, and one in five have low HDL-C. Efforts to prevent, diagnose and treat MetS and its risk factors among youth are important to prevent type 2 diabetes, cardiovascular diseases and premature mortality.

Acknowledgements

We are grateful to Statistics Canada for conducting the Canadian Health Measures Survey and to the people of Canada who participated in the study.

There were no competing interests.

We acknowledge the support of the University of Ottawa’s Department of Epidemiology.

Table 4

<table>
<thead>
<tr>
<th>Condition</th>
<th>Presence of ≥ 1 risk factor(s)</th>
<th>Abdominal obesity</th>
<th>Low HDL-C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% (95% CI) CV</td>
<td>% (95% CI) CV</td>
<td>% (95% CI) CV</td>
</tr>
<tr>
<td>Income Adequacy (50 missing)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lowest and lower middle</td>
<td>35.9 (25.9–46.0) 0.14</td>
<td>21.4 (11.8–30.9) 0.22b</td>
<td>19.4 (12.7–26.1) 0.17b</td>
</tr>
<tr>
<td>Upper middle</td>
<td>41.8 (34.4–49.3) 0.09</td>
<td>28.1 (19.7–36.6) 0.15</td>
<td>20.2 (15.2–25.2) 0.12</td>
</tr>
<tr>
<td>Highest</td>
<td>35.5 (29.8–41.2) 0.08</td>
<td>18.4 (11.7–25.1) 0.17b</td>
<td>17.5 (14.2–20.6) 0.09</td>
</tr>
<tr>
<td>Household education (35 missing)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Secondary school graduation or less</td>
<td>43.7 (29.4–58.0) 0.16</td>
<td>31.8 (17.6–46.1) 0.22b</td>
<td>19.3 (6.9–31.7) 0.31b</td>
</tr>
<tr>
<td>Some postsecondary</td>
<td>42.8 (32.4–53.2) 0.12</td>
<td>28.3 (13.7–42.9) 0.25b</td>
<td>26.1 (15.1–37.3) 0.21b</td>
</tr>
<tr>
<td>Postsecondary graduation</td>
<td>35.3 (31.0–39.6) 0.06</td>
<td>19.8 (14.6–25.0) 0.13</td>
<td>17.5 (14.8–20.2) 0.08</td>
</tr>
</tbody>
</table>

*Abbreviations: BP, blood pressure; HDL-C, high-density lipoprotein cholesterol; SES, socioeconomic status.

*aThese figures are based on weighted data.

bThese figures are being published with reservation as 0.16 CV ≥ 0.33.
and Community Medicine and the Public Health Agency of Canada.

References

