Appendices of the Draft Screening Assessment Petroleum Sector Stream Approach Aviation Fuels [Fuels] Chemical Abstracts Service Registry Numbers 64741-87-3 64741-86-2 68527-27-5 Environment Canada Health Canada April 2013

Appendix 5: Persistence and Bioaccumulation

Table A5.1. Experimental aerobic half-lives of hydrocarbons from a formulated gasoline in water (Prince et al. 2007b)

Class / Chemical Median
half-life
(days)
Mean
half-life
(days)
Aromatics
benzene 3.2 4.6
1-methylethylbenzene 3.2 5.2
2-ethyl-1,3-dimethylbenzene 3.2 4.9
Two-ring aromatics
naphthalene 3.2 4.4
n-Alkanes
butane 15.0 31.8
hexane 6.5 10.2
nonane 3.2 4.4
dodecane 2.8 3.8
Isoalkanes
2-methylpropane (isobutane) 17.1 41.7
2-methylpentane 10.4 16.7
3-methylpentane 10.1 21.3
2-methylheptane 4.8 6.0
4-methylnonane 3.2 4.8
Cycloalkanes
1,1,3-trimethylcyclohexane 8.5 14.2
Alkenes
cis-3-hexene 6.5 8.4
Cycloalkenes
cyclopentene 8.1 11.5
4-methylcyclopentene 8.1 12.5

Top of Page

Table A5.2. Experimental biodegradation values for diesel fuel components in water (Penet et al. 2004)

Diesel oil type Culture type Degradation endpoints/
units
Degradation
value (%)
Mineralization value (%)
Straight run Soil,
Sludge
Biodegradation, % (28 days) 91 ± 1
45 ± 15
70 ± 4,
66 ± 13
Hydrocracking Soil,
Sludge
Biodegradation, % (28 days) 93 ± 3
61 ± 6
67 ±4,
50 ± 11
Supplemented hydrocracking Soil,
Sludge
Biodegradation, % (28 days) 90 ± 2
82 ± 4
85 ± 12,
58 ± 6
Light cycle Soil,
Sludge
Biodegradation, % (28 days) 88 ± 1
75 ± 7
70 ± 5,
53 ± 6
Fischer-Tropsch Soil,
Sludge
Biodegradation, % (28 days) 95 ± 4
79 ± 4
55 ± 8,
66 ± 4
Commercial Soil,
Sludge
Biodegradation, % (28 days) 93 ± 2
61
54 ± 4,
54

Top of Page

Table A5.3. Modelled atmospheric degradation of representative structures for aviation fuels (AOPWIN 2008)

Substance Half Life (days)
OH•
Alkanes
C9 1.1
C12 0.8
C15 0.59
C17 0.51
Isoalkanes
C6 1.96
C9 1.1
C12 0.8
C15 0.6
One-ring cycloalkanes
C9 0.8
C12 0.6
C15 0.5
Two-ring cycloalkanes
C9 0.8
C15 0.4
C20 0.3
Polycycloalkanes
C14 0.4
One-ring aromatics
C6 5.5 (2–20)a
C9 0.64
C15 0.7
Cycloalkane monoaromatics
C9 1.3
C12 0.8
C15 0.5
Two-ring aromatics
C10 0.5
C15 0.2
Cycloalkane diaromatics
C12 0.2
C15 0.6
Three-ring aromatics
C15 0.3
[a] Howard et al. 1991, bracketed values denote the overall range.

Top of Page

Table A5.4. Modelled data for primary (BIOHCWIN 2008; BIOWIN4 2009) and ultimate (BIOWIN3,5,6 2009; CATABOL; TOPKAT) degradation of aviation fuels[a]

 Substance Primary Degradation
BioHCWIN (2008)
(half-life in days)
BIOWIN 4 (2009)
Expert Survey[b]
Alkanes
C9
n-nonane
7 4.20
C12
n-dodecane
12 4.14
C15
n-pentadecane
19 4.08
C17
n-heptadecane
25 4.04
Isoalkanes
C6
2-methyl pentane
4 3.72
C9
2,2-dimethylheptane
8 3.93
C12
2,3-dimethyl decane
12 3.87
C15
2-methyl tetradecane
17 3.81
One-ring cycloalkanes
C9
n-propylcyclohexane
10 3.67
C12
1-methyl-2-pentyl cyclohexane
9 3.87
C15
nonylcyclohexane
25 3.81
Two-ring cycloalkanes
C9
cis-bicyclo nonane
56 3.67
C15
2-isopenta decylin
88 3.55
C20
2,4-dimethyl octyl-2-decalin
250 3.56
Polycycloalkanes
C14
hydrophenanthrene
117 3.57
One-ring aromatics
C6
benzene
4.6 (5–16)[a] 3.39
C9
1,2,4-trimethyl benzene
5 3.54
C15
2-nonyl
benzene
14 3.76
Cycloalkane monoaromatics
C9
indan
3 3.54
C12
1,4-dimethyl tetralin
7 3.48
C15
methyl-octahydro-phenanthrene
466 3.42
Two-ring aromatics
C10
naphthalene
6 3.32
C15
4-isopropyl biphenyl
8 3.50
Cycloalkane diaromatics
C12
acenaphthene
19 3.49
C15
ethylfluorene
17 3.50
Three-ring PAHs
C15
2-methyl phenanthrene
24 3.50

Table A5.4 cont. Modelled data for primary (BIOHCWIN 2008; BIOWIN4 2009) and ultimate (BIOWIN3,5,6 2009; CATABOL; TOPKAT) degradation of aviation fuels[a]

 Substance Ultimate degradation Extrapolated half-life compared with criteria (days)[d]
BIOWIN
3 (2009)
Expert Survey[b]
BIOWIN
5 (2009)
MITI linear probability[c]
BIOWIN
6 (2009)
MITI non-linear probability[c]
CATABOL (2008)
% BOD
TOPKAT (2004)
Probability of biodegradability
Alkanes
C9
n-nonane
3.51 0.68 0.87 99.95 1 < 182
C12
n-dodecane
3.42 0.70 0.87 100 1 < 182
C15
n-pentadecane
3.33 0.72 0.88 99.94 1 < 182
C17
n-heptadecane
3.26 0.74 0.89 100 1 < 182
Isoalkanes
C6
2-methyl pentane
0.71 0.51 0.70 16.7 1 < 182
C9
2,3-dimethylheptane
3.21 0.38 0.50 9.45 1 < 182
C12
2,3-dimethyl decane
3.12 0.40 0.52 60.2 1 < 182
C15
2-methyltetradecane
3.03 0.57 0.75 91.11 1 < 182
One-ring cycloalkanes
C9
n-propyl cyclohexane
2.92 0.55 0.69 3.3 1 < 182
C12
1-methyl-2-pentyl cyclohexane
3.13 0.51 0.53 4.6 1 < 182
C15
nonylcyclohexane
3.04 0.57 0.65 57.9 1 < 182
Two-ring cycloalkanes
C9
cis-bicyclo
nonane
2.92 0.51 0.58 0 0.001 < 182
C15
2-isopenta
decylin
2.74 0.32 0.19 1.8 0 ≥ 182
C20
2,4-dimethyl
octyl-2-decalin
2.67 0.45 0.26 4.5 0 ≥ 182
Polycycloalkanes
C14
hydro-phenanthrene
2.77 0.39 0.24 0 0 ≥ 182
One-ring aromatics
C6
benzene
2.44 0.53 0.73 7.5 1 < 182
C9
1,2,4-trimethylbenzene
2.62 0.09 0.11 22.8 0.001 ≥ 182
C15
2-nonyl
benzene
2.99 0.44 0.53 50.9 0.11 < 182
Cycloalkane monoaromatics
C9
indan
2.79 0.30 0.40 1 0.001 < 182
C12
1,4-dimethyl tetralin
2.70 0.29 0.36 2.5 0.005 ≥ 182
C15
methyl-octahydro-phenanthrene
2.61 0.19 0.13 0.91[e] 0 ≥ 182
Two-ring aromatics
C10 naphthalene 2.33 0.40 0.45 3.2 0.001 < 182
C15
4-isopropyl
biphenyl
2.71 0.19 0.15 12.16 0 ≥ 182
Cycloalkane diaromatics
C12
acenaphthene
2.71 0.19 0.19 3.82 0 ≥ 182
C15
ethylfluorene
2.70 0.15 0.10 1.03[e] 0 ≥ 182
Three-ring PAHs
C15
2-methyl
phenanthrene
2.70 0.26 0.16 21.2[e] 0.004 < 182
Abbreviations: BOD, biological oxygen demand; MITI, Ministry of International Trade & Industry, Japan.
[a] Half-life estimations are for non-specific media (i.e., water, soil and sediment).
[b] Output is a numerical score from 0–5.
[c] Output is a probability score.
[d] Based on the modelled primary and ultimate biodegradation results.
[e] Out of domain.

Top of Page

Table A5.5. Experimental BAFs for aromatic hydrocarbons

Substance Reference; Study Log Kow BAF[a]
Experimental
(L/kg)
One-ring aromatics
C6
Benzene
Zhou et al. 1997
Atlantic salmon (white muscle); 96 hr. (WSF of crude oil)
2.13 (expt.) 4
C7
toluene
Zhou et al. 1997
Atlantic salmon (white muscle); 96 hr. (WSF of crude oil)
2.73 (expt.) 11
C8
ethylbenzene
Zhou et al. 1997
Atlantic salmon (white muscle); 96 hr. (WSF of crude oil)
3.15 (expt.) 26
C8
xylenes
Zhou et al. 1997
Atlantic salmon (white muscle); 96 hr. (WSF of crude oil)
3.12 (expt.) 47
C9
isopropyl benzene
Zhou et al. 1997
Atlantic salmon (white muscle); 96 hr. (WSF of crude oil)
3.66 (expt.) 20
C9
propyl benzene
Zhou et al. 1997
Atlantic salmon (white muscle); 96 hr. (WSF of crude oil)
3.69 (expt.) 36
C9
ethylmethyl benzene
Zhou et al. 1997
Atlantic salmon (white muscle); 96 hr. (WSF of crude oil)
3.98 (expt.) 51
C9
trimethyl benzene
Zhou et al. 1997
Atlantic salmon (white muscle); 96 hr. (WSF of crude oil)
3.66 (expt.) 74
Two-ring aromatics
C10
naphthalene
Neff et al. 1976
Clam; 24-hr. (oil-in-water dispersion of No. 2 fuel oil) lab study
3.30 (expt.) 2.3
C11
methyl naphthalenes
Zhou et al. 1997
Atlantic salmon (white muscle); 96-hr. (WSF of crude oil) lab study
3.87 (expt.) 230
C11
1-methyl naphthalene
Neff et al. 1976
Clam; 24-hr. (oil-in-water dispersion of No. 2 fuel oil) lab study
3.87 (expt.) 8.5
C11
2-methyl naphthalene
Neff et al. 1976
Clam; 24-hr. (oil-in-water dispersion of No. 2 fuel oil) lab study
3.86 (expt.) 8.1
C12
dimethyl naphthalene
Neff et al. 1976
Clam; 24-hr. (oil-in-water dispersion of No. 2 fuel oil) lab study
4.31 (expt.) 17.1
C13
trimethyl naphthalene
Neff et al. 1976
Clam; 24-hr. (oil-in-water dispersion of No. 2 fuel oil) lab study
4.81 26.7
Three-ring aromatics
C14
phenanthrene
Burkhard and Lukasewycz 2000
Lake trout; field study
4.57 87
[a] (expt.): experimental data

Top of Page

Table A5.6. Fish BAF and BCF predictions for representative structures of aviation fuels using the modified Arnot-Gobas Three Trophic Level Model (2003a) with corrections for metabolism rate (kM) and dietary assimilation efficiency (Ed)

Substance Log Kow Metabolic Rate Constant
for MTL Fish
(day-1)[a]
BCF[b]
MTL Fish
(L/kg)
BAF[b]
MTL Fish
(L/kg)
Alkanes
C9n-nonane 5.7 0.09 1905 4074
C12
n-dodecane
6.1 2.2 (expt.) 126 155
C15
n-pentadecane
7.7 0.44[c] 42 550
Isoalkanes
C6
2-methyl pentane
3.2 0.5 85 85
C9
2,2-dimethyl heptane
4.6 0.184 2140 3000
C12
2,3-dimethyl decane
6.1 1.22[d] 794 1950
C15
2-methyltetradecane
7.5 0.020[e] 1148 181 970
One-ring cycloalkanes
C9
n-propyl cyclohexane
4.56 0.16 851 891
C12
1-methyl-2-pentyl cyclohexane
6.0 0.042 3548 18 621
Two-ring cycloalkanes
C9
cis-bicyclononane
3.7 0.08 272 280
C15
2-isopentadecalin
6.3 0.04[f] 3236 7244
Polycycloalkanes
C14
hydro-phenanthrene
5.1 0.01[g] 5888 8511
One-ring aromatics
C6
Benzene
2.13 (expt.) 0.2 11 11
C12
1,2,3-triethyl benzene
3.7 0.2 257 257
C15
n-nonyl benzene
7.1 (expt.) 0.01[h] 4365 151 356
Cycloalkane monoaromatics
C9
Indan
3.18 (expt.) 0.85 71 71
C12
1,4-dimethyl tetralin
4.8 0.056 1905 2239
C15
methyl-octahydro-phenanthrene
5.6 0.13[i] 2630 5445
Two-ring aromatics
C10
naphthalene
3.30 0.00 138 148
C15
4-isopropyl biphenyl
5.5 (expt.) 0.65[j] 871 1175
Cycloalkane diaromatics
C12
acenaphthene
3.92 (expt.) 0.10 275 380
C15
ethylfluorene
5.05 0.23 730 809
Three-ring aromatics
C15
2-methyl phenanthrene
4.9 0.20 789 851
[a] Metabolic rate constant normalized to middle-trophic-level fish in Arnot-Gobas Three Trophic Level Model (2004) at W=184g, T=10°C, L=6.8%) based on available experimental kinetic BMF or BCF data.
[b] Arnot-Gobas BCF and BAF predictions for middle-trophic-level fish using Three Trophic Level Model (Arnot and Gobas 2003a) using normalized rate constant and correcting for observed or estimated dietary assimilation efficiency reported in Table A5.7a, b (Appendix 5).
[c] Based on rate constant data for C15 n-pentadecane.
[d]Based on calculated metabolic rate constant for n-dodecane.
[e] Based on rate constant for C15 2,6,10-trimethyl dodecane.
[f] Based on rate constant data for isopropyldecalin and diisopropyldecalin.
[g] Based on rate constant data for isopropyl hydrophenanthrene and 1-methyl-7-(isopropyl)-hydrophenanthrene.
[h] Based on rate constant data for octylbenzene and decylbenzene.
[i] Based on rate constant data for octahydrophenanthrene.
[j] Based on rate constant data for ethyl biphenyl.
[*] C17 alkanes and C20 two-ring cycloalkanes all having values of log Kow > 8 were excluded from this comparison, as model predictions may be highly uncertain for chemicals that have estimated log Kow values > 8 (Arnot and Gobas 2003a).
(expt.): experimental log Kow data

Top of Page

Table A5.7a. Experimental BCFs and predicted BCFs and BAFs normalized to BCF study conditions and a middle-trophic-level fish for selected representative structures using a modified version of the Arnot-Gobas BCFBAF model (2003a)

Substance Log Kow Study Endpoint BCF or BMF
Measured
Predicted BCF[a] Predicted BAF[a] Reference; Species
Study Conditions [b] MTL Fish[c] Study Conditions[b] MTL Fish[c]
Alkanes
C8 
octaneh
5.18 (expt.) BCFss[1] 530 537 490 560 537 JNITE 2010; carp
C12 
n-dodecane
6.10 (expt.) BCFss[1] 240 240 794 251 1950 Tolls and van Dijk 2002; fathead minnow
C15
n-pentadecane
7.71 BCFss[1] 20 21 18 100 112 CITI 1992; carp
C15 
n-pentadecane
7.71 BCFss[1] 26 27 23 162 182 JNITE 2010; carp
C16 
n-hexadecaneh
8.20 BCFss[1] 46 47 41 1778 1995 CITI 1992; carp
C16 
n-hexadecaneh
3.15 (expt.) BCFss[1] 20 20 20 21 21 JNITE 2010; carp
Isoalkanes
C15
2,6,10-trimethyl dodecaneh
7.49 BCFss[1] 152

151

1000[d]

85

575[d]

490

16 595[d]

575

47 863[d]

EMBSI 2006b; rainbow trout
C15
2,6,10-trimethyl dodecaneh
7.49 BMFkinetic 0.97f n/a n/a n/a n/a EMBSI 2004a, 2005b;
rainbow trout
One-ring cycloalkanes
C6
cyclohexaneh
3.44 (expt.) BCFss[1] 77 77 89 77 89 CITI 1992; carp
C7
1-methyl cyclohexaneh
3.61 (expt.) BCFss[1] 240 190[*] 275[*] 229[*] 426[*] CITI 1992; carp
C8
ethyl cyclohexaneh
4.56 (expt.) BCFss[1] 2529 1622[*] 2344[*] 4467[*] 5495[*] CITI 1992; carp
C14 n-octyl cyclohexaneh 7.0 BMFkinetic 0.06 n/a n/a n/a n/a EMBSI 2006a; rainbow trout
Two-ring cycloalkanes
C10
trans-decalinh
4.20 BCFss[1] 2200 724[*] 1072[*] 1288[*] 1660[*] CITI 1992; carp
C10
cis-decalinh
4.20 BCFss[1] 2500 724[*] 1072[*] 1288[*] 1660[*] CITI 1992; carp
C13 isopropyl decalinh 5.50 BMFkinetic 0.02 n/a n/a n/a n/a EMBSI 2006a; rainbow trout
C16 diisopropyl decalinh 6.85 BMFkinetic 0.1 n/a n/a n/a n/a EMBSI 2008a; rainbow trout
Polycycloalkanes
C17
isopropyl hydro phenanthreneh
6.5 BMFkinetic 0.45 n/a n/a n/a n/a EMBSI 2006b; rainbow trout
C18
1-methyl-7-(isopropyl)-hydro phenanthreneh
7.0 BMFkinetic 0.35 n/a n/a n/a n/a EMBSI 2008a; rainbow trout
C18
perhydro chryseneh
6.0 BMFkinetic 0.38 n/a n/a n/a n/a EMBSI 2008b; rainbow trout
One-ring aromatics
C9
1,2,3-trimethyl benzeneh
3.66 (expt.) BCFss[1] 133[e] 135 155 135 155 CITI 1992; carp
C10
1,2-diethyl benzeneh
3.72 (expt.) BCFss[1] 516[e] 245[*] 355[*] 309[*] 427[*] CITI 1992; carp
C11
1-methyl-4-tert-butyl benzene
3.66 (expt.) BCFss[1] < 1.0 214[*] 309[*] 263[*] 263[*] JNITE 2010; carp
C14 n-octyl benzeneh 6.3 (expt.) BMFkinetic 0.02[f] n/a n/a n/a n/a EMBSI 2007a, 2007b; rainbow trout and carp
C16 decyl benzeneh 7.4 (expt.) BMFkinetic 0.18 n/a n/a n/a n/a EMBSI 2005d;  rainbow trout
Cycloalkane monoaromatics
C10
tetralinh
3.49 (expt.) BCFss[1] 230 145[*] 214[*] 166[*] 562[*] CITI 1992; carp
C14
octahydro- phenanthreneh
5.9 BCFss[1] 3418 n/a n/a n/a n/a EMBSI 2005d; rainbow trout
C14
octahydro- phenanthreneh
5.9 BMFkinetic[1] 0.13 n/a n/a n/a n/a EMBSI 2009;  rainbow trout
C18
dodecahydro- chryseneh
6.00 BCFss[1] 4588 n/a n/a n/a n/a EMBSI 2008c; rainbow trout
C18
dodecahydro- chryseneh
6.00 BMFkinetic[1] 0.17 n/a n/a n/a n/a EMBSI 2008c; rainbow trout
Two-ring aromatics
C10
naphthalene
3.30 (expt.) BCFss[1] 94 95[*] 138[*] 105[*] 148[*] JNITE 2010; carp
3.30 (expt.) BCFss[1] 93[e] 95[*] 138[*] 105[*] 148[*] CITI 1992; carp
C11
2-methyl naphthaleneh
3.86 (expt.) BCFss[1]
BCFkinetic[1]
2886[e]
3930[f]
2884[*] n/a 2884[*] n/a Jonsson et al. 2004; sheepshead minnow
C12
1,3-dimethyl naphthaleneh
4.42 (expt.) BCFss[1]
BCFkinetic[1]
4039[e]
5751[f]
4073 n/a 4073 n/a Jonsson et al. 2004; sheepshead minnow
C13
2-isopropyl naphthaleneh
4.63 BCFss[1]
BCFkinetic[1]
12 902[e]
33 321[f]
12 882 n/a 12 882 n/a Jonsson et al. 2004; sheepshead minnow
C14
4-ethyl biphenylh
4.80 BCFss[1] 839[e] 832 759 851 813 Yakata et al. 2006; carp
Cycloalkane diaromatics
C12
acenaphthene
3.92 (expt.) BCFss[1] 991[e] 389 562 977 741 CITI 1992; carp
C18
hexahydro- terphenylh
6.44 BCFss[1] 1 646 n/a n/a n/a n/a EMBSI 2008c; rainbow trout
C18
hexahydro- terphenylh
6.44 BMFkinetic 0.06 n/a n/a n/a n/a EMBSI 2009; rainbow trout
C18
octahydro-chryseneh
6.0 BMFkinetic 0.05 n/a n/a n/a n/a EMBSI 2010;  rainbow trout
C18
hexahydro- chryseneh
5.8 BMFkinetic 0.05 n/a n/a n/a n/a EMBSI 2010; rainbow trout
Three- and Four-ring aromatics
C12
acenaphthyleneh
3.94 (expt.) BCFss[1] 275[e] 275 380 275 380 Yakata 2006; carp
C13
fluoreneh
4.18 (expt.) BCFss[1] 1030[e] 1023 1071 1023 3311 CITI 1992; carp Carlson et al. 1979; fathead minnow
C14
phenanthreneh
4.46 (expt.) BCFss[1] 2944[e] 2951 1905[*] 2884 3890[*] Carlson et al. 1979; fathead minnow
Abbreviation: (expt.), experimental log Kow data.
[a] BCF and BAF predictions were performed using the Arnot-Gobas mass-balance kinetic model normalizing the metabolic rate constant according to fish weight, lipid content and temperature reported in study or protocol.
[b] Fish weight, lipid content and water temperature used when specified in study. For CITI/NITE tests when conditions not known, fish weight = 30g, lipid = 4.7%, temperature = 22oC for carp in accordance with MITI BCF test protocol. When more than one study was reported, the geomean of study values was used for model normalization inputs.
[c] Kinetic mass-balance predictions made for middle-trophic-level fish (W = 184g, T = 10°C, L = 6.8%) in Arnot-Gobas Three Trophic Level Model (Arnot and Gobas 2004).
[d] Calculated using growth-rate-corrected elimination half-life reported in BCF study.
[e] Geometric mean of reported steady-state values.
[f] Geometric mean of reported kinetic values.
[g] Corrected BAF using dietary assimilation efficiency of 3.2%.
[h] Structures that are included as analogues for the chosen representative structures.
[1] BCF steady state (tissue conc./water conc.).
[*] Predictions generated with metabolism rate equal to zero due to negative predicted metabolism rate constant. Metabolism rate constant deemed erroneous or not applicable given log Kow and BCF result (see kinetic rate constants table).
n/a: not applicable; study details could not be obtained to determine predicted BCFs and BAFs.

Top of Page

Table A5.7b. Calculated kinetic rate constants for selected representative structures

Substance Study Endpoint Uptake Rate Constants day-1 (k1) Total Elimination Rate Constant day-1 (kT)[b] Gill Elimination Rate Constant day-1
(k2)
Alkanes
C8
octanee
BCFss[1] 406 0.742 0.077
C12
n-dodecane
BCFss[1] 1525 5.00 0.035
C15
n-pentadecane
BCFss[1] 407 1.69 0.000
C15
n-pentadecane
BCFss[1] 407 1.30 0.000
C16
n-hexadecanee
BCFss[1] 407 0.252 0.000
C16
n-hexadecanee
BCFss[1] 379 19.28 5.720
Isoalkanes
C15
2,6,10-trimethyl dodecanee
BCFss[1]

 

1317

0.2103[b]
1.139
0.000[c]
0.005
C15
2,6,10-trimethyl dodecanee
BMFkinetic   0.071
0.036[d]
0.000
One-ring cycloalkanes
C6
cyclohexanee
BCFss[1] 392 5.090 3.031
C7
1-methyl cyclohexanee
BCFss[1] 397 2.081 2.072
C8
ethyl cyclohexanee
BCFss[1] 405 0.247 0.238
C14 n-octyl cyclohexanee BMFkinetic   0.130
0.095
0.000
Two-ring cycloalkanes
C10
trans-decaline
BCFss[1] 404 0.519 0.510
C10
cis-decaline
BCFss[1] 404 0.551 0.542
C13
isopropyldecaline and C16
diisopropyldecaline
BMFkinetic  

0.478

0.136

0.000
Polycycloalkanes
C17
isopropyl hydro-phenanthrenee
BMFkinetic   0.078
0.043
0.000
C18
1-methyl-7-(isopropyl)-hydro-phenanthrenee
BMFkinetic   0.071
0.036
0.000
C18
perhydrochrysenee
BMFkinetic   0.091
0.056
0.000
One-ring aromatics
C9
1,2,3-trimethyl benzenee
BCFss[1] 398 2.989 1.852
C10
1,2-diethyl benzenee
BCFss[1] 398 1.679 1.617
C11
1-methyl-4-tert-butyl benzenee
BCFss[1] 398 398.2 1.852
C14 n-octyl benzenee BMFkinetic   0.643
0.608
0.000
C16 decyl benzenee BMFkinetic   0.324
0.289
0.000
Cycloalkane monoaromatics
C10
tetraline
BCFss[1] 394 2.720 2.711
C14
octahydro-phenanthrenee
BCFss[1] n/a n/a n/a
C14
octahydro- phenanthrenee
BMFkinetic[1]   0.239
0.204
0.000
C18
dodecahydro-chrysenee
BCFss[1] n/a n/a n/a
C18
dodecahydro-chrysenee
BMFkinetic[1]   0.174
0.139
0.000
Two-ring aromatics
C10
naphthalene
BCFss[1] 387 4.138 4.129
C11
2-methyl naphthalenee

BCFss[1]

BMFkinetic[1]

 

1089

0.610[d]

0.610

 

0.607

C12
1,3-dimethyl naphthalenee

BCFss[1]

BMFkinetic[1]

2322[d]

1100

0.406[d]

0.406

n/a

0.403

C13
2-isopropyl naphthalenee

BCFss[1]

BMFkinetic[1]

3961[d]

0.120[d]

0.120

n/a

0.551[f]

C14
4-ethyl biphenyle
BCFss[1]   1.140 0.480
Cycloalkane diaromatics
C12
acenaphthene
BCFss[1] 401 1.037 1.028
C18
hexahydro terphenyle
BCFss[1] n/a n/a n/a
C18
octahydro-chrysenee
BMFkinetic   1.424
1.390
0.000
C18
hexahydro-chrysenee
BMFkinetic   1.424
1.390
0.000
Three- and Four-ring aromatics
C12
acenaphthylenee
BCFss[1] 456 1.611 1.273
C13
fluorenee
BCFss[1] 622 0.901 0.892
C13
fluorenee
BMFkinetic[1]   0.100 (ke) 0.000
C14
phenanthrenee
BCFss[1]  957 0.833 0.821

Table A5.7b cont. Calculated kinetic rate constants for selected representative structures

Substance Metabolic Rate Constant day-1 (kM)[a] Growth Rate Constant day-1(kG) Fecal Egestion Rate Constant day-1
(kE)[c]
Dietary Assimilation Efficiency (α, ED) Reference
Alkanes
C8octanee 0.657 0.001 0.007   JNITE 2010; carp
C12n-dodecane 4.95 0.002 0.013   Tolls and van Dijk 2002; fathead minnow
C15n-pentadecane 1.69 0.001 0.003   CITI 1992; carp
C15n-pentadecane 1.30 0.001 0.003   JNITE 2010; carp
C16n-hexadecanee 0.249 0.001 0.002   CITI 1992; carp
C16n-hexadecanee 13.30 0.001 0.008   JNITE 2010; carp
Isoalkanes
C15
2,6,10-trimethyl dodecanee
0.158[h]
1.119
0.0425[d]
0.008
0.002
0.005
  EMBSI 2004b, 2005b; rainbow trout
C15
2,6,10-trimethyl dodecanee
0.032[h] 0.035 0.004 28% EMBSI, 2004a, 2005a;
rainbow trout
One-ring cycloalkanes
C6
cyclohexanee
2.050 0.001 0.008   CITI 1992; carp
C7
1-methyl cyclohexanee
-0.429 0.001 0.008   CITI 1992; carp
C8
ethyl cyclohexanee
-0.087 0.001 0.008   CITI 1992; carp
C14
n-octyl cyclohexanee
0.087[h] 0.035 0.008 5% EMBSI 2006a; rainbow trout
Two-ring cycloalkanes
C10
trans-decaline
-0.336 0.001 0.008   CITI 1992; carp
C10
cis-decaline
-0.390 0.001 0.008   CITI 1992; carp
C13
isopropyl decaline and C16
diisopropyl decaline
0.128[h] 0.035 0.008 6% EMBSI 2006a; rainbow trout
Polycycloalkanes
C17
isopropyl hydro phenanthrenee
0.035[h] 0.035 0.008 13% EMBSI 2006b; rainbow trout
C18
1-methyl-7-(isopropyl)-hydro phenanthrenee
0.030[h] 0.035 0.006 9% EMBSI 2008a; rainbow trout
C18
perhydro chrysenee
0.048[h] 0.035 0.008 15% EMBSI 2008b; rainbow trout
One-ring aromatics
C9
1,2,3-trimethyl benzenee
1.128 0.001 0.008   CITI 1992; carp
C10
1,2-diethyl benzenee
-0.854 0.001 0.008   CITI 1992; carp
C11
1-methyl-4-tert-butyl benzenee
395.6 0.001 0.008   JNITE 2010; carp
C14 n-octyl benzenee 0.600[h] 0.035 0.008 10% EMBSI 2007a, 2007b;  rainbow trout and carp
C16 decyl benzenee 0.284[h] 0.035 0.005   EMBSI 2005c;  rainbow trout
Cycloalkane monoaromatics
C10
tetraline
-1.009 0.001 0.008   CITI 1992; carp
C14
octahydro phenanthrenee
n/a n/a n/a n/a EMBSI 2005d; rainbow trout
C14
octahydro phenanthrenee
0.197[h] 0.035 0.007 19% EMBSI 2009; rainbow trout
C18
dodecahydro chrysenee
n/a n/a n/a n/a EMBSI 2008c; rainbow trout
C18
dodecahydro chrysenee
0.132[h] 0.035 0.007 18% EMBSI 2008c; rainbow trout
Two-ring aromatics
C10
naphthalene
-0.020 0.001 0.008   JNITE 2010; carp
C11
2-methyl naphthalenee

 

0.000

 

0.002

 

0.001

 

3.2%g

Jonsson et al. 2004; sheepshead minnow
C12
1,3-dimethyl naphthalenee

n/a

0.000

n/a

0.002

n/a

0.001

n/a

3.2%g

Jonsson et al. 2004 (cited in Lampi et al. 2010); sheepshead minnow
C13
2-isopropyl naphthalenee  

n/a

-0.447

n/a

0.002

n/a

0.014

n/a

3.2%g

Jonsson et al. 2004; sheepshead minnow
C14
4-ethyl biphenyle
0.645 0.002 0.013   Yakata et al. 2006; carp
Cycloalkane diaromatics
C12
acenaphthene
-0.632 0.001 0.008   CITI 1992; carp
C18
hexahydro terphenyle
n/a n/a n/a   EMBSI 2008c; rainbow trout
C18
octahydro chrysenee
1.383[h] 0.034 0.007 55% EMBSI 2010; rainbow trout
C18
hexahydro chrysenee
1.383[h] 0.034 0.007 49% EMBSI 2010; rainbow trout
Three- and Four-ring aromatics
C12
acenaphthylenee
0.370 0.001 0.010   Yakata 2006; carp
C13
fluorenee
-0.302 0.001 0.012   CITI 1992, Carlson et al. 1979; carp and fathead minnow
C13
fluorenee
0.098 n/a 0.002 14% Niimi and Palazzo 1986; rainbow trout
C14
phenanthrenee
-0.512 0.002 0.012   Carlson et al. 1979; fathead minnow
[a] Negative values of kM indicate possible kinetic model error, as the estimated rate of metabolism exceeds the total of all other elimination rate constants combined. Observed BCFs may thus not be explained by kinetic modelling of metabolic rate (e.g., steric hindrance, low bioavailability) and could also point to study exposure error. Negative values of kM are not included in the estimate of kT.
[b] kT = (kE + kG).
[c] Calculated using kinetic mass-balance BCF or BAF model based on reported rate kinetics of empirical study and correcting for log Kow, fish body weight, temperature and lipid content of fish from cited study.
[d] As reported in empirical study (geomean used when multiple values reported).
[e] Structures that are included as analogues for the chosen representative structures.
[f] Value adjusted so that predicted kT agrees with observed k2 reported in study.
[g] Based on assimilation efficiency data for 6-n-butyl-2,3-dimethylnaphthalene.
[h] Calculated using kinetic mass-approach when ke is known (Arnot et al. 2008a) and correcting for log Kow, fish body weight, temperature and lipid content of fish from cited study.
n/a: not applicable; study details could not be obtained to determine predicted BCFs and BAFs.

Top of Page

Table A5.8. Trophic magnification factors[a] for PAH in the marine food webs of Bohai Bay, Baltic Sea and Tokyo Bay

Compound TMF
(Wan et al. 2007)
TMF
(Nfon et al. 2008)
TMF (Takeuchi et al. 2009)
acenaphthylene 0.45[*]    
acenaphthene 1.02    
fluorene 1.15    
phenanthrene 0.43 0.82[*] 0.75[*]
[a] Antilogs of the slopes of the regression equations for the lipid-based PAH concentrations versus d15N were used to calculate the TMFs.
[*] Indicates a significant TMF slope.

Page details

2024-05-16