Faster, Stronger, More Secure: Advancing 5G capabilities and concepts for defence and security

Innovation Networks

Up to $3M to stimulate the free flow of ideas critical for innovation.


The Challenge

In response to the rapid development and deployment of commercial 5G technologies, the Department of National Defence and the Canadian Armed Forces (DND/CAF) are seeking to stimulate the application of advances in technologies for 5G and beyond to defence and security problems.  

What IDEaS Provides

Up to $3,000,000 (over 4 years) to develop a research micro-network to stimulate collaboration and build a network of expertise in support of Canada’s current and future defence and security needs.

What Innovators Bring

Led by a Canadian university, innovators bring a self-organized multidisciplinary group of researchers to collaborate and advance research in the 5G domain that have DND/CAF applications, specifically: Architectures for Defence and Security Operations; Assured Performance and Security; and Applications and Sensors.

Challenge

Faster, Stronger, More Secure: Advancing 5G capabilities and concepts for defence and security

In response to the rapid development and deployment of commercial 5G technologies, the Department of National Defence and the Canadian Armed Forces (DND/CAF) are seeking to stimulate the application of advances in technologies for 5G and beyond to defence and security problems. Currently, most research and development work within academia and industry focuses on commercial applications. To leverage that work to address DND/CAF specific needs, the IDEaS program is looking to develop several research micro-nets focusing on DND/CAF applications, specifically: Architectures for Defence and Security Operations, Assured Performance and Security, and Applications and Sensors.

Formation of Innovation Networks

Recognizing that successful and sustainable research networks take time to build, this first round of calls for proposals is meant to establish the creation of small innovation networks, or micro-nets.

The benefit to Canada and DND/CAF will be the development of a critical mass of researchers, highly qualified personnel and expertise within the Canadian innovation community that supports basic and applied research. It is expected that the existing micro-nets will work together to eventually form larger and sustainable national Innovation Networks dedicated to further research on 5G technologies and beyond.

Background and context

To leverage ongoing industrial investment and advances in consumer communications technologies to enhance capabilities in the defence and security context, there are three areas where innovation is required: Architectures for Defence and Security Operations, Assured Performance and Security, and Applications and Sensors. Proposals are being sought that exploit advances made possible by the technologies within 5G and beyond in these areas.

Architectures for Defence and Security Operations

Activities in defence and security, from logistics to mobile and deployed operations, require a high degree of situational awareness to maintain efficiency and effectiveness. Modernized capabilities would benefit from architectures that integrate advanced communication concepts and technologies to take advantage of features such as rapid technology refresh, edge computing, software-defined networking, virtualization, and machine-to-machine connectivity.

Assured Performance and Security

Maintaining secure and resilient connectivity and information assurance with respect to confidentiality, integrity and availability, is essential for defence and security in all operating conditions. As more capabilities take advantage of the rapid and flexible opportunities of wireless communications, technologies are required to enhance the quality of service and security of data and user information in networked operations.

Applications and Sensors

The characteristics of 5G and beyond, such as low latency, high density and high bandwidth, open the door to new applications and use cases.   The integration of new technologies, such as novel sensors and effectors, may lead to innovations that will increase the efficiency of existing capabilities and introduce new ones.

Expected Outcomes:

We are seeking proposals from micro-nets that aim to exploit the advances within 5G and beyond to develop, integrate and demonstrate technologies to improve current capabilities and to introduce new concepts. Example areas of research may include, but are not limited to:

  • architectures that exploit the features of 5G and beyond to improve situational awareness;
  • scalable and adaptable networks to match force requirements;
  • non-cryptographic techniques to enhance information security in public networks;
  • applications of machine-to-machine communications and Internet of Things;
  • application of artificial intelligence to enhance network performance and security; and
  • haptic, virtual or artificial reality applications for simulation, training and operational use.

Eligibility

Recognizing that successful sustainable research networks take time to build, Innovation Networks calls for proposals are to support the creation of smaller networks, called Micro-nets.

A Micro-net is a self-organized multidisciplinary team of at least three eligible organizations/institutions who carry out interdisciplinary research on one or more aspects of the S&T Challenge. Each Micro-Network will advance solutions from Solution Readiness Levels (SRLs) 1 to 6 inclusively,

Eligible organizations or institutions are:

  • Canadian universities and educational institutions chartered in Canada;
  • Incorporated for-profit organizations;
  • Incorporated not-for-profit organizations;
  • Provincial/territorial and municipal government organizations; and
  • International universities and educational institutions.

Micro-net Team Composition

Each Micro-net must be composed of a minimum of three investigators, up to a maximum of 10 investigators, from any combination of the eligible institutions and organizations. A Canadian university must be the Applicant. Individuals from the eligible institutions and organizations who are members of existing networks, associations, groups, consortia, etc. may participate.

Read and refer to the Applicant Guide for complete details on eligibility and Micro-net composition.

Letters of Intent

Letters of Intent invited to submit Full Proposals: Faster, Stronger, More Secure: Advancing 5G capabilities and concepts for defence and security

Applicants listed below have been invited to submit a Full Proposal to IDEaS no later than 14:00 Eastern Time, February 15, 2022. Submission information appears in the language in which received.

Project Title Keywords University Lead Applicant
5G as a Signal of Opportunity for Low-Cost, Radio-Silent, and Scalable Passive Radar Remote Sensing Remote Sensing; Passive Radar; Signal Processing; Beamforming Antennas; 5G/mmWave Spectrum Monitoring; Machine Learning University of Calgary Hatem Abou-Zeid
5G Digital Campus Human-Machine Interface (HMI); Extended Reality (XR); Aviation industry; Simulation; Metaverse; Haptics Ryerson University Joon Chung
5G Digital Identity (5GDID) 5G; Digital Identity; Blockchain architecture; Defence; NFT Non-fungible Tokens; Cybersecurity The University of New Brunswick David McGee
5G Exploitation at scale: Intelligent Dynamic Layered Decentralized Networking Artificial Intelligence; Distributed Networks; Fragmented Networks; Meshable Networks; Edge Computing; IDLDN - Intelligent Dynamic Layered Decentralized Net Brock University Naser Ezzati-Jivan
5G-Assisted Marine-Air-Ground Integrated Networking for Performance and Security Enhancement 5G and beyond communication networks; Marine-air-ground integrated networking; Data analytics and visualization; Security and privacy; AI and edge computing; Underwater communication and localization Memorial University of Newfoundland Octavia Dobre
5G-Enabled Trustworthy Common Operational Picture with Edge Server Data Engine (5G-TCOP) Explainable AI; Edge Analytic; Air-to-Ground, Air-to-Air 5G; Sensor Networks and Drone Networks; Channel Modeling and Interference Mitigation; Distributed Machine Learning University of Calgary Henry Leung
Aerial Sensing and Communication Using 5G and Beyond Technologies for Canadian Armed Forces UAV Communication for 5G Systems; UAV localization Using sensing towers; Aerial Sensing Technologies; Radio over Free-Space Optical (FSO); Anti-Jamming UAV-to-UAV Communication; UAV Authentication The University of British Columbia Dr. Julian Cheng
AI for Defence and Security Systems Verification and Operation AI for IT Operations and quality of service; AI and machine data analytics; Service reliability, availability and performance; Wireless network security; Formal hardware verification; Defence and security systems Concordia University Abdelwahab Hamou-Lhadj
AI/ML driven ad-hoc 5G tactical network AI/ML; Decentralized; Multi-bearer; ECCM; LPI/LPD; Interoperability Ecole de Technologie Superieure Georges Kaddoum
AI-Driven Situational-Aware Security and Performance Assurance for 5G-Enabled Critical Infrastructures Critical Infrastructures; Connected Vehicles; Cybersecurity; Artificial Intelligence; Radio fingerprinting; 5G and Beyond University of Ottawa Burak Kantarci
AI-Empowered Zero-Touch and Zero-Trust 5G Secure and Dependable Network Operation and Management Zero-Trust Architecture; Zero-Touch Operation; Security by Design; Dependability by Design; Artificial Intelligence; 5G Automation Brock University Glaucio Haroldo Silva de Carvalho
Alert Systems for Detection and Monitoring of Chemical and Explosive Threats Chemical or Explosive (CE) threats; Alert systems; Public Safety; Low-power MIMO wireless networks; Inertial Gas Sensors; RFID sensors University of Waterloo Eihab Abdel-Rahman
Autonomous, Reliable, Scalable and Secure Resource Management in Multi-level 5G edge 5G; Edge Computing; Resource Optimization; Artificial Intelligence; Autonomous decision making; Predictive and remote analytics University of Ottawa Burak Kantarci
Context-aware and Robust Architectures for Defence and Security Operations Context-aware Cybersecurity; 5G/B5G Cybersecurity; Cybersecurity Architectures; MLOps for Cybersecurity and Defence; Blockchain; Robustness Ecole de Technologie Superieure Chamseddine Talhi
Emulation Platform With Built-in Machine Learning and Optimization Framework For 5G Tactical Networks 5G; Emulation platform; Machine Learning; Network optimization; Tactical networks; Network security Ecole de Technologie Superieure Kim Khoa Nguyen
High Performance Robustness and Security for Flexible Content Aware 5G Networks (HENRIETA 5G) Simulation; Optimization; Machine learning (ML); Context Awareness; Flexibility, Robustness and Security; Performance, Quality of Experience (QoE) Polytechnique Montréal Brunilde Sansò
High-Power Light-Activated Reconfigurable Integrated Waveguide Switches for Secure High Speed Communications Millimeter-wave; High power; Photoconductive switch; Integration; Waveguide; Reconfiguration University of Alberta Kambiz Moez
Integrated cryptography and physical layer protections for security and privacy in 5G and Beyond systems Cryptography, security and privacy protection; 5G physical layer, mmwave, MIMO and OFDM; Integration of crypto and physical layer; Threats, vulnerabilities and attacks; Availability, pre-authentication and authentication; Applications in securing Internet-of-Things University of Waterloo Guang Gong
Intelligent Sensors and Electromagnetic Surfaces for Secure Networking and Cloaking in 5G Wireless Environments Adaptive metasurfaces; Intelligent sensors; Active cloaking; Artificial intelligence; Secure networks; Compact antennas University of Alberta Ashwin Iyer
Living Lab to Promote 5G Capabilities and Concepts for Defence and Security Purposes 5G Living Lab; Network slicing; Edge computing and Internet of Things (IoT); Security; Experiential Learning; Simulated Use Cases Carleton University Sandra Nichol
mmWave radar-based spatially comprehensive real-time monitoring capability for low flying aerial and ground targets Cognitive radar (real-time programmable beam forming); Sensor network; Machine learning; Eerial target identification and tracking; Traffic control; Unstable ground Simon Fraser University Bernhard Rabus
NETGUARD: Side-Channel Analysis to Protect 5G Supply Chain and Network Operation From Nation State Attacks Supply chain cybersecurity; Side channel analysis University of Waterloo Sebastian Fischmeister
Programmable Radio Environments for 5G Secure Communications Reconfigurable intelligent electromagnetic surfaces; Space-time electromagnetic metasurfaces; Security in wireless communications; Active and passive attacks; Metasurface-aided localization; Security and privacy-aware resource allocation University of Manitoba Ekram Hossain
REACTnet – Response in Emergencies: Advanced Communications-based Tactical Network 5G; Emergencies; Wildfire; Flood; Disasters; Satcom Simon Fraser University Peter Anderson
Real-time Threat Prevention for Cyber-physical systems on 5G Standalone Networks Cyberphysical systems; Real-Time Threat Prevention; Artificial Intelligence; 5GCore; Anomaly detection; Service-based architecture University of Ottawa Burak Kantarci
Reliable and Secure IoT Systems for Defence and Security in the Context of 5G and Beyond IoT for Defence and Security; 5G and Beyond Networks; IoT security; IoT reliability; Resource optimization Carleton University Chris Lannon
Reseaux resillients aeriens terrestres integres pour repondre aux besoins lies a la force Reseaux echelonnables; reseaux adaptables; resilience; intelligence artificielle; reseaux autogeres; reseaux aeriens et terrestres Polytechnique Montréal Soumaya Cherkaoui
Secure and Dependable Hierarchical Processing over 5G Networks 5G; Edge computing; Security; Architecture; Reliability The Governing Council of the University of Toronto Eyal de Lara
Secure and Reliable End-to-End Network Slicing for 5G and Beyond Mobile Networks Security; Reliability; 5G Network slicing; Artificial Intelligence (AI); Software-Defined Networking (SDN); Multi-access Edge Computing (MEC) University of Waterloo Raouf Boutaba
Securing the future: AI-powered predictive analytics of future security compromises Predicting compromise; AI enabled security; 5G networks; Risk Assessment; Root Cause Analysis; Attacker's tactics University of Saskatchewan Leah Johnson
Security at all layers: communication, networking and inference techniques for secure-by-design networks Physical layer security; Network security and latency; Distributed and secure inference; Massive MIMO; Full duplex radios; mmWave communication McGill University/The Royal Institution for the advancement of learning Aditya Mahajan
Smart and Secure Connected Architecture (SaSCA) Connected Vehicles; Internet of Things; 5G Technology; Mesh Networks; Cyber Security; Artificial Intelligence University of Windsor, SHIELD Automotive Cybersecurity Centre of Excellence Dr. Ikjot Saini
Smart, Scalable Haptic Simulation for Aviation Training 5G Networking; Virtual and mixed reality; Simulation and training; Haptics; Aviation; Human-centered design University of Waterloo Oliver Schneider
Toward Situational-aware and Adaptive 5G Networks for Defence and Security: A Machine Learning Approach Artificial intelligence (AI) enabled network architecture; Edge computing and software-defined networking; Sensors and Internet of things (IoT); Sensing, computation, and communications; Security, data privacy, and anomaly detection; Machine learning University of British Columbia Vincent Wong
Utilizing 5G Technology for UAV Detection UAS detection using 5G; Counter UAV; Defence security; AI models University of Ottawa Miodrag Bolic

Deadline

The application period has closed. This challenge is no longer accepting applications. For any questions, please contact the Innovation Networks team at: IDEaS-IN.IDEeS-RI@forces.gc.ca

Results

Note: Submission information appears in the language in which it was received.

Project Title University Partners Amount
Toward Situational-aware and Adaptive 5G Networks for Defence and Security: A Machine Learning Approach University of British Columbia University of British Columbia
University of Victoria
University of Quebec
University of Toronto
$1,499,934.00
A Platform for Secure and Dependable Hierarchical Edge Processing on 5G University of Toronto University of Toronto
McGill University
École de Technologie Supérieure
University of British Columbia
$1,500,000.00
Context-aware and Robust Architectures for Defence and Security Operations École de Technologie Supérieure, Université du Québec École de Technologie Supérieure
StreamScan
IPtoki Inc.
Concordia University
Memorial University
McMaster University
Université du Québec à Trois-Rivières
$1,499,600.00
5G-Enabled Trustworthy Common Operational Picture with Edge Server Data Engine (5G-TCOP) University of Calgary University of Calgary
University of Alberta
University of Manitoba
University of Toronto
Memorial University of Newfoundland
$1,487,300.00
AI-Driven Situational-Aware Security and Performance Assurance for 5G-Enabled Critical Infrastructures University of Ottawa University of Ottawa
BlackBerry
ThinkRF
$1,495,062.00
Autonomous, Reliable, Scalable and Secure Resource Management in Multi-level 5G edge University of Ottawa University of Ottawa
Wesley Clover
Telus
$1,486,375.00
Intelligent Sensors and Electromagnetic Surfaces for Resilient Networking and Communications in 5G Wireless Environments University of Alberta University of Alberta
University of Toronto
Toronto Metropolitan University
$1,500,000.00
Secure and Reliable End-to-End Network Slicing for 5G and Beyond Mobile Networks University of Waterloo University of Waterloo
École de Technologie Supérieure University of Regina
Rockport Networks
NoviFlow
BlackBerry
$1,499,838.00
Report a problem or mistake on this page
Please select all that apply:

Thank you for your help!

You will not receive a reply. For enquiries, contact us.

Date modified: