Tables of the Screening Assessment Report

Phenol, 4,4'-(1-methylethylidene) bis[2,6-dibromo-
Chemical Abstracts Service Registry Number
79-94-7

Ethanol, 2,2'-[(1-methylethylidene)bis[(2,6-dibromo-4,1-phenylene)oxy]]bis
Chemical Abstracts Service Registry Number
4162-45-2

Benzene, 1,1'-(1-methylethylidene)bis[3,5-dibromo-4-(2-propenyloxy)-
Chemical Abstracts Service Registry Number
25327-89-3

Environment Canada
Health Canada
November 2013

Table of Content

Table 1. Substance identity for TBBPA, TBBPA Bis(2-hydroxyethyl ether), and TBBPA Bis(allyl ether)
CAS RN 79-94-7
DSL name Phenol, 4,4’-(1-methylethylidene)bis[2,6-dibromo-
National Chemical Inventories (NCI) names1 Phenol, 4,4'-(1-methylethylidene)bis[2,6-dibromo- (TSCA, DSL, PICCS, ASIA-PAC, NZI°C)
2,2',6,6'-Tetrabromo-4,4'-isopropylidenediphenol (French) (DSL)
2,2',6,6'-tetrabromo-4,4'-isopropylidenediphenol (English, French) (EINECS)
2,2',6,6'-Tetrabrom-4,4'-isopropylidendiphenol (German) (EINECS)
2,2',6,6'-tetrabromo-4,4'-isopropilidendifenol (Spanish) (EINECS)
2, 2-Bis (4'-hydroxy-3',-5'-dibromophenyl) propane (ENCS)
Phenol, 4,4'-(1-methylethylidene)bis[2,6-dibromo- (AICS)
4,4'-(1-Methylethylidene)bis[2,6-dibromophenol] (ECL)
BIS(PHENOL, 2,6-DIBROMO), 4,4'-(1-METHYLETHYLIDENE) (PICCS)
BISPHENOL A, TETRABROMO- (PICCS)
BISPHENOL, 4,4'-(1-METHYLETHYLIDENE)TETRABROMO- (PICCS)
TETRABROMOBISPHENOL-A (ABS) (PICCS)
Tetrabromobisphenol A (PICCS)
Other names Tetrabromobisphenol A (TBBPA); 2,2',6,6'-Tetrabromobisphenol A; 3,3',5,5'-Tetrabromobisphenol A; 3,5,3',5'-Tetrabromobisphenol A; 2,2-Bis(3,5-dibromo-4-hydroxyphenyl)propane; 2,2-Bis(4-hydroxy-3,5-dibromophenyl)propane; 4,4'-Isopropylidenebis(2,6-dibromophenol); 4,4'-(1-Methylethylidene)bis(2,6-dibromophenol); Tetrabromodiphenylolpropane; Tetrabromodian; Tetrabromobisphenol A; T 0032; BA 59; BA 59BP; BA 59P; CP 2000; Flame Cut 120G; Flame Cut 120R; GLCBA 59P; NSC 59775; PB 100; RB 100; Bromdian; FR-1524; Fire Guard FG2000; Firemaster BP 4A; Great Lakes BA-59P; Saytex CP-2000; Saytex RB 100; Saytex RB 100PC;
Chemical group Brominated flame retardant
Chemical subgroup Brominated aromatic phenol
Chemical formula C15H12Br4O2
Chemical structure  Chemical structure 79-94-7
SMILESFootnote Table 11 Oc(c(cc(c1)C(c(cc(c(O)c2Br)Br)c2)(C)C)Br)c1Br
Mol. Wt. 543.88 g/mol (Ashford 1994)
Table 1. Substance identity continued.
CAS RN 4162-45-2
DSL name Ethanol, 2,2'-[(1-methylethylidene)bis[(2,6-dibromo-4,1-phenylene)oxy]]bis-
National Chemical Inventories (NCI) names1 Ethanol, 2,2'-[(1-methylethylidene)bis[(2,6-dibromo-4,1-phenylene)oxy]]bis- (TSCA, DSL, ENCS, PICCS, ASIA-PAC)
4,4'-Isopropylidenebis(2-(2,6-dibromophenoxy)ethanol) (French) (DSL)
4,4'-isopropylidenebis(2-(2,6-dibromophenoxy)ethanol) (English, French) (EINECS)
4,4'-Isopropylidenbis(2-(2,6-dibromphenoxy)ethanol) (German) (EINECS)
4,4'-isopropilidenobis(2-(2,6-dibromofenoxi)etanol) (Spanish) (EINECS)
Ethanol, 2,2'-[(1-methylethylidene)bis[(2,6-dibromo-4,1-phenylene)oxy]]bis- (AICS)
2,2'[(1-Methylethylidene)bis[(2,6-dibromo-4,1-phenyleneoxy]]bisethanol (ECL)
Tetrabromobisphenol A Bis(2-hydroxyethyl ether) (PICCS)
Other names 2,2'-Isopropylidenebis[(2,6-dibromo-p-phenyleneoxy)diethanol]
2,2-Bis[3,5-dibromo-4-(b-hydroxyethoxy)phenyl]propane
2,2-Bis[3,5-dibromo-4-(2-hydroxyethoxy)phenyl]propane
2,2-Bis[4-(2-hydroxyethoxy)-3,5-dibromophenyl]propane
4,4'-Isopropylidenebis[2-(2,6-dibromophenoxy)ethanol]
AFR 1011
BA 50
BA 50P
Ethanol, 2,2'-[(1-methylethylidene)bis[(2,6-bromo-4,1-phenylene)oxy]bis-
Ethanol, 2,2'-[isopropylidenebis[(2,6-dibromo-p-phenylene)oxy]]di-
Ethoxylated tetrabromobisphenol A
FG 3600
Fire Guard 3600
Chemical group Brominated flame retardant
Chemical subgroup Brominated aromatic phenol
Chemical formula C19H20Br4O4
Chemical structure  Chemical structure 4162-45-2
SMILES1 OCCOc1c(Br)cc(cc1Br)C(C)(C)c2cc(Br)c(OCCO)c(Br)c2
Mol. Wt. 631.98 g/mol (EPISuite 2008)
Table 1. Substance identity continued.
CAS RN 25327-89-3
DSL name Benzene, 1,1'-(1-methylethylidene)bis[3,5-dibromo-4-(2-propenyloxy)-
National Chemical Inventories (NCI) names1 Benzene, 1,1'-(1-methylethylidene)bis[3,5-dibromo-4-(2-propenyloxy)- (TSCA, DSL, ENCS, PICCS, ASIA-PAC, NZI°C)
1,1'-Isopropylidenebis[4-(allyloxy)-3,5-dibromobenzene] (French) (DSL, EINECS)
1,1'-isopropylidenebis[4-(allyloxy)-3,5-dibromobenzene] (EINECS)
1,1'-Isopropylidenbis[4-(allyloxy)-3,5-dibrombenzol] (German) (EINECS)
1,1'-isopropilidenbis[4-(aliloxi)-3,5-dibromobenceno] (Spanish) (EINECS)
Benzene, 1,1'-(1-methylethylidene)bis[3,5-dibromo-4-(2-propenyloxy)- (AICS)
1,1'-isopropylidenebis[4-(allyloxy)-3,5-dibromobenzene] (ECL)
Tetrabromobisphenol A Bis(allyl ether) (PICCS)
Other names 2,2-Bis(3,5-dibromo-4-allyloxyphenyl)propane
2,2-Bis(4-allyloxy-3,5-dibromophenyl)propane
BE 51
FG 3200
Fire Guard 3200
Flame Cut 122K
Propane, 2,2-bis[4-(allyloxy)-3,5-dibromophenyl]-
Pyroguard SR 319
See also Brominated flame retardant
SR 319
Tetrabromobisphenol A allyl ether
Tetrabromobisphenol A diallyl ether
Tetrabromobisphenol A, bis(allyl ether)
Tetrabromobisphenol-A-bisethoxylate
 Chemical group Brominated flame retardant
Chemical subgroup Brominated aromatic phenol
Chemical formula C21H20Br4O2
Chemical structure  Chemical structure 25327-89-3
SMILESFootnote Table 12 C=CCOc1c(Br)cc(cc1Br)C(C)(C)c2cc(Br)c(OCC=C)c(Br)c2
Mol. Wt. 624.01 g/mol (EPISuite 2008)

Top of Page

Table 2. Selected measured and predicted physical and chemical properties of TBBPA, TBBPA bis(2-hydroxyethyl ether) and TBBPA bis(allyl ether)
Property TBBPA TBBPA bis(2-hydroxyethyl ether) TBBPA bis(allyl ether)
Physical state
(20°C; 101.325 kPa)
Crystalline or powdered white (colourless) solid
(WHO 1995)
Crystalline white-coloured powder
(WHO 1995)
Crystalline white solid
(WHO 1995)
Water solubility (mg/L)

0.240 (25°C, pH 6.7-7.3)
(ACCBFRIP 2002b)

0.148–2.34
(25°C; pH 5.0–9.0)
(ACCBFRIP 2002b)

0.063 (21°C)
(NOTOX 2000)

0.72–4.16 (15–25°C)
(Velsicol Chemical Corporation 1978f)

0.03119 (25°C) (WSKOWWIN, version 1.43, within ECOSAR)

0.005 – 0.019
(WATERNT, version 1.01)Footnote Table 29

0.0001593 (25°C)
(WSKOWWIN version 1.34)

2.05 x 10-5 (25°C)
(WSKOWWIN, version 1.43, within ECOSAR)

4.07 x 10-6 (25°C)
(WSKOWWIN, version 1.41)

3.40 x10-6 (25°C)
(WATERNT, version 1.01)

3.12 x 10-7 ( 25°C)
(WSKOWWIN version 1.34)

7.4 x10-7 – 2.83 x10-6
(WATERNT, version 1.01)(EVA)9

1.12 x10-3
(ACD/labs v.12.5)

Vapour pressure (Pa)

less than 1.19 x 10-5
(20°C)
(ACCBFRIP 2001b)

6.24 x 10-6 (25°C)
(Watanabe and Tatsukawa 1989)

4.72 x 10-9 (25°C)
(Kuramochi et al. 2008)

 

8.47 x 10-9 (298.15K)
(Fu J and Suuberg FM  2012)

1.29 x 10-13 (25°C)
(MPBPWIN, version 1.31)

1.53 x 10-8 (25°C)
(MPBPWIN, version 1.43) Mackay method

2.9 x 10-9 (25°C)
(MPBPWIN, version 1.43) Antoine method

2.00 x 10-8 (25°C)
(MPBPWIN, version 1.31)

2.65 x 10-7 (25°C)
(MPBPWIN, version 1.43) modified grain method

Henry’s law constant
(Pa m3/mole)

less than 0.10
0.014–0.054
(EU RAR 2008)

1.47 x 10-5
(Kuramochi et al. 2008)

1.78 x 10-8
(HENRYWIN, version 3.03, bond method)

5.12 x 10-7
(HENRYWIN, version 3.03, VP/Wsol)

IncompleteFootnote Table 21.1
(HENRYWIN, version 3.03, group method)

1.30 x 10-2
(HENRYWIN, version 3.03 and 3.20, bond method)

40.0
(HENRYWIN, version 3.03, and 3.20, VP/Wsol)

Incomplete1
(HENRYWIN, version 3.03 and 3.20, group method)

Log Kow
(Log D)

5.903
(ACCBFRIP 2001a)

4.540
(Velsicol Chemical Corporation 1978b)
6.53– (-1.22)(25°C; pH 3.05 –11.83)
(Kuramochi et al. 2008)

5.1
(WSKOWWIN version 1.41)Footnote Table 22.1

5. 7
(WSKOWWIN version 1.41)Footnote Table 23
Species Specific QSAR Estimates (using KOWWIN, version 1.65)

TBBPA0 7.2

TBBPA-1 4.52Footnote Table 24

TBBPA-2 3.18Footnote Table 25

5.48
(KOWWIN, version 1.67, Experimental Value Adjusted (EVA))

5.995
(ClogP, version, 1.0.0)

6.7842
(KOWWIN, version, 1.65)

7.48 at pH 7
(PALLAS, version 4.0)

8.71
(KOWWIN, version 1.67 (EVA)

8.89
(ClogP, version 1.0.0)

10.02
(KOWWIN, version 1.65)

10.33
(PALLAS, version 4.0)

Log Koc

5.43Footnote Table 26
(KOCWIN, version 2.0, MCI)

4.526
(KOCWIN, version 2.0, LogKow derived)

5.026
(ASTER)
5.5Footnote Table 27
4.17
Species Specific Koc EstimatesFootnote Table 28

TBBPA0 6.8

TBBPA-1 4.1

TBBPA-2 2.8

3.24
(KOCWIN, version 2.0, MCI)

3.25
(KOCWIN, version 2.0, LogKow derived)

5.87
(KOCWIN, version 2.0, MCI)

5.85
(KOCWIN, version 2.0, LogKow derived)

pKa

7.5 (1st) and 8.5 (2nd)
(Bayer 1990)

9.40
(ACCBFRIP 2002a)

6.79 (1st) and 7.06 (2nd)
(Kuramochi et al. 2008)

-3.16 – 14.41
(PALLAS, version 4.0)
 

Top of Page

Table 3a. Results of the Level III fugacity modelling for TBBPA (EQC 2003)
Percentage of substance partitioning into
each compartment
Substance released to: Air Water Soil Sediment
Air (100%) 0.10 0.07 97.6 2.22
Water (100%) 7.42 x 10-4 2.84 0.75 96.4
Soil (100%) 2.68 x 10-5 6.85 x 10-3 99.8 0.23
Table 3b. Results of the Level III fugacity modelling for TBBPA bis(allyl ether) (EQC 2003)
Percentage of substance partitioning into
each compartment
Substance released to: Air Water Soil Sediment
Air (100%) 0.48 0.31 81.1 18.1
Water (100%) 1.57 x 10-7 1.7 2.64 x 10-5 98.29
Soil (100%) 3.74 x 10-9 0.002 99.9 0.12
Table 3c. Results of the Level III fugacity modelling for TBBPA bis(2-hydroxyethyl ether) (EQC 2003)
Percentage of substance partitioning into
each compartment
Substance released to: Air Water Soil Sediment
Air (100%) 0.35 0.93 89.8 8.95
Water (100%) 1.99 x 10-6 9.43 5.03 x 10-4 90.57
Soil (100%) 8.02 x 10-7 0.01 99.89 0.10

Top of Page

Table 4. Modelled data for degradation of TBBPA
AIR
Fate Process Model
and model basis
Model Result and Prediction Extrapolated Half-life (days)
Atmospheric oxidation AOPWIN 2008Footnote Table 41.2  t 1/2 = 3.615 days greater than or equal to 2
Ozone reaction AOPWIN 20081 n/aFootnote Table 42.2 n/a
Table 4. Modelled data for degradation of TBBPA
WATER
Fate Process Model
and model basis
Model Result and Prediction Extrapolated Half-life (days)
Hydrolysis HYDROWIN 20081 n/a2 n/a
Table 4. Modelled data for degradation of TBBPA
Primary biodegradation
Fate Process Model
and model basis
Model Result and Prediction Extrapolated Half-life (days)
Biodegradation (aerobic) BIOWIN 20081
Sub-model 4: Expert Survey
(qualitative results)
2.37Footnote Table 43.1
“biodegrades slowly”
less than 182
Table 4. Modelled data for degradation of TBBPA
Ultimate biodegradation
Fate Process Model
and model basis
Model Result and Prediction Extrapolated Half-life (days)
Biodegradation (aerobic) BIOWIN 20081
Sub-model 3: Expert Survey
(qualitative results)
1.353
“recalcitrant”
greater than or equal to 182
Biodegradation (aerobic) BIOWIN 20081
Sub-model 5:
MITI linear probability
-0.01Footnote Table 44.1
“biodegrades slowly”
greater than or equal to 182
Biodegradation (aerobic) BIOWIN 20081
Sub-model 6:
MITI non-linear probability
0.014
“biodegrades very slowly”
greater than or equal to 182
Biodegradation (aerobic) TOPKAT 2004
Probability
04
“biodegrades very slowly
greater than or equal to 182
Biodegradation (aerobic) CATABOL 2004-2008
% BOD
(biological oxygen demand)
3.5% BOD =
“biodegrades very slowly”
greater than or equal to 182

Top of Page

Table 5a. Empirical data for bioaccumulation of TBBPA
Test organism Endpoint Value wet weight (L/kg) Reference
Fish
Pimephales promelas
BCF 1200 Footnote Table 51.3
1300 Footnote Table 52.3
Brominated Flame Retardants Industry Panel 1989cFootnote Table 53.2
Fish
Lepomis macrochirus
BCF 20 (edible tissue) 1
170 (visceral tissue)1
Velsicol Chemical Corporation 1978d
Fish
Carp
BCF 30 – 485 1 CITI 1992
Marine Invertebrate
Crassostrea virginica
BCF 720 1
780 2
Brominated Flame Retardants Industry Panel 1989b
Freshwater Invertebrate
Chironomus tentans
BCF 240 -510 high organic carbon (OC),
490 - 1100 medium OC
650 - 3200 low OC
Brominated Flame Retardants Industry Panel 1989h
Terrestrial earthworm, Eisenia fetida

 

BAF studyFootnote Table 54.2

 

0.24 - 0.019,
5.1

 

ACCBFRIP 2003

Table 5b: Modelled data for bioaccumulation for TBBPA
Test organism logKow kM
(days-1)
BCF (L/kg) Value wet weight (L/kg) Reference
Fish 5.9 1.12Footnote Table 5b1.4 BCF 150 BCFBAF 2008;
Sub-model 2: Arnot-Gobas mass balance,
Fish 5.9 1.121 BAF 174.1 BCFBAF 2008;
Sub-model 3: Arnot-Gobas mass balance.
Fish 5.9 0.07Footnote Table 5b2.4 BCF 347.9 CPOPs 2008; BBM with Mitigating Factors 2008

Top of Page

Table 6. Measured concentrations of TBBPA and TBBPA bis(allyl ether) in the ambient environment and sewage sludge
Medium Location; year TBBPA ConcentrationFootnote Table 6 * Samples TBBPA bis(allyl ether)
concentration
Reference
Air United States; 1977 less than 0.01–1.8 µg/m3 8   Zweidinger et al. 1979a
Air United Kingdom; 2007 8 x 10-7
(0.8 pg/m3)
5   Abdallah et al. 2008
Air Russian Arctic; 1994 to 1995 0.00007 µg/m3 in 1 of 4   Alaee et al. 2003
Air Arctic (northeast Atlantic); 2004 less than 4.0 x 10-8–1.7 x 10-7 µg/m3 in 2 of 7   Xie et al. 2007
Air Wadden Sea; 2005 2.1 x 10-7, 5.0 x 10-7 µg/m3 (vapour)
1.0 x 10-7, 1.9 x 10-7 µg/m3 (particle)
in 2 of 2   Xie et al. 2007
Air Northern Germany; 2005 and 2006 less than 4.0 x 10-8–2.5 x 10-7 µg/m3 (vapour)
1.6 x 10-7–8.5 x 10-7 µg/m3 (particle)
in 6 of 7
in 7 of 7
  Xie et al. 2007
Air/Precipitation The Netherlands; 2000 to 2001 0.0000001–0.000002 µg/m3
0.0002–0.0041µg/L
n.s. Footnote Table 6a   Duyzer and Vonk 2003
Air Suburban area, Stockholm, Sweden n.d.Footnote Table 6b 0/2   Sjödin et al. 2001
Air Berlin,; Germany n.d. Multiple, n.s.   Kemmlein 2000
Air Southern Arkansas, USA near two organobromine chemical manufacturing facilities

n.d. - 0.028 (facility 1)

[n.d. - 1.8]
(facility 2)

8, 4 high volume samples at each facility   Zweidinger et al. 1979a
Precipitation Germany, Belgium, the Netherlands; no year less than 0.0005–0.0026 µg/L in 8 of 50   Peters 2003
Water France. Predecelle river near Paris n= 5 stations; June 2008 less than 3 x 10-5-
6 x 10-5 µg/L
( less than 35-64 pg/L)
n.s.   Labadie et al. 2010
Water England, Lakes n=9;
July –Aug 2008;
Nov 2008 andJan 2009
1 x 10-4 -
3 x 10-3 µg/L
(140-3200 pg/L)
3 per site x 9 sites=27   Harrad et al. 2009
Water Japan, multiple locations; 2000 n.d.
(detection limit: 0.09)
0/27   MOE Japan 2003
Water Japan, multiple locations; 1988 n.d.
(detection limit: 0.04)
0/150   MOE Japan 2003
Water Japan, multiple locations; 1987 0.05.
(detection limit: 0.03)
Detected in 1 of 75   MOE Japan 2003
Water Japan, multiple locations; 1977 n.d.
(0.02 to 0.04)
0/15   MOE Japan 2003
Table 6. Measured concentrations of TBBPA and TBBPA bis(allyl ether) in the ambient environment and sewage sludge (continued)
Medium Location; year TBBPA Concentration* Samples TBBPA bis(allyl ether)
concentration
TBBPA Concentration*
Water Germany; 2000 less than 0.0002–0.0204 µg/L (TBBPA)
less than 0.0002–0.00106 µg/L
(Me-TBBPAFootnote Table 6c)

in 7 of 30

in 3 of 30

  Kuch et al. 2001
Water Japan; 1977 to 1989 less than 0.02–0.05 µg/L in 1 of 240   Environment Agency Japan 1989, 1991
Water South China, Liuyang river; 2009   18 samples n.d. to 0.0491 µg/L (49.1 ng/L)
(instrument detection limit:40 pg/L)
Qu et al. 2011
Landfill leachage Canada; 2009-2010 0.049 mg/L (49 ng/L) 50   CRA 2011
Landfill leachate Finland; no year less than 0.2–0.9 µg/L 2   Peltola 2002
Landfill leachate
(solid phase)
The Netherlands; no year less than 5.5–320 µg/kg dw in 3 of 9   de Boer et al. 2002
Landfill leachate
(solid phase)
The Netherlands; 2002 less than 0.3–320 µg/kg dw 11   Morris et al. 2004
Sediment Lake Ontario; 2003 n.d. to 0.063 mg/kg dw 8   Quade 2003
Sediment Detroit River; 2000 0.60–1.84 µg/kg dw 8   Quade 2003
Sediment United States; 1977 less than 100–330,000 µg/kg dw 7   Zweidinger et al. 1979b
Sediment France, Predecelle river near Paris
Sediments, n=5 stations
0.07-0.3 µg/kg dw
(65-280 pg/g dw)
18   Labadie et al. 2010
Sediment United Kingdom, English lakes; July –Aug 2008; Nov 2008 and Jan 2009 0.3-3.8 µg/kg dw
(330 – 3800 pg/g dw)
7 cores / site= 63   Harrad et al. 2009
Sediment United Kingdom; 1998 less than 1.07–2.3 µg/kg ww in 1 of 50   CEFAS 2002
Sediment United Kingdom; no year less than 2.4–9753 µg/kg dw in 10 of 22   de Boer et al. 2002
Sediment Ireland; no year less than 0.1–3.7 µg/kg dw in 4 of 13   de Boer et al. 2002
Sediment England; 2000 to 2002 less than 2.4–9750 µg/kg dw 22   Morris et al. 2004
Sediment The Netherlands; 2000 less than 0.1–6.9 µg/kg dw 28   Morris et al. 2004
Sediment Belgium; 2001 less than 0.1–67 µg/kg dw 20   Morris et al. 2004
Sediment Sweden; 1988 34–270 µg/kg dw (TBBPA)
24–1500 µg/kg dw
(Me-TBBPAc)
n.s   Sellström and Jansson 1995
Sediment Finland; 2000 less than 0.2–21 µg/kg dw in 2 of 5   Peltola 2002
Sediment Germany; 2001 n.d. to 4.6 µg/kg dw in 7 of 20   Heemken et al. 2001
Sediment Germany; no year n.d.to 18.68 µg/kg dw 13   Kemmlein 2000
Sediment Germany; no year less than 0.2–1.83 µg/kg dw in 8 of 19   Kuch et al. 2001
Table 6. Measured concentrations of TBBPA and TBBPA bis(allyl ether)in the ambient environment and sewage sludge (continued)
Medium Location; year TBBPA Concentration* Samples TBBPA bis(allyl ether)
concentration
Reference
Sediment

China; 2009-2010
Dongjiang River

Zhujiang River

Beijiang River

Xijiang River

Shunde tributaries

Dayanhe River

Pearl River Estuary

Surface sediment samples
n.d.-82.3 µg/kg dw (mean=15.158 µg/kg dw)
0.103-127 µg/kg dw (mean=28.365 µg/kg dw)
0.537-6.20 µg/kg dw (mean=2.804 µg/kg dw)
n.d.-1.33 µg/kg dw (mean=0.510 µg/kg dw)
0.264-27.1 µg/kg dw (mean=4.589 µg/kg dw)
0.741-304 µg/kg dw (mean=13.375 µg/kg dw)
0.06-1.39 µg/kg dw (mean=0.471 µg/kg dw)

 

42

19

14

13

13

8

12

  Feng et al. 2012
Sediment Qinghe canal in Beijin, China; May-July, 2011 0.3 – 22 mg/kg dw 13   Xu et al. 2012
Sediment Norway; 2003 0.02–39 µg/kg dw 11   Schlabach et al. 2004
Sediment Norway; no year 1.92–44.4 µg/kg dw (TBBPA)
n.d. 3 to1.23 µg/kg dw
(Me-TBBPAc)

in 12 of 12

in 11 of 12

  SFT 2002
Sediment Norway; no year 1.24 µg/kg dw n.s.   Fjeld et al. 2004
Sediment The Netherlands; no year less than 0.1–32 µg/kg ww (TBBPA)
less than 0.1–0.4 µg/kg ww
(Me-TBBPAc)

in 35 of 47

in 6 of 47

  de Boer et al. 2002
Sediment Japan; 1981 20 µg/kg dw 1   Watanabe et al. 1983
Sediment Japan; 1981 to 1983 less than 0.5–140 µg/kg dw (TBBPA)
less than 0.5–1.8 µg/kg dw
(Me-TBBPAc)
in 14 of 19
in 5 of 19
  Watanabe et al. 1983
Sediment Japan; 1987 less than 2–150 µg/kg dw in 14 of 66   Watanabe and Tatsukawa 1989
Sediment Japan; 1988 less than 2–108 µg/kg dw in 20 of 130   Environment Agency Japan 1996
Sediment Japan; 1999 0.68–12 µg/kg dw 6   Ohta et al. 2002
Sediment Japan; 2003 0.08–5.0 µg/kg dw 17   Ohta et al. 2004
Sediment China; October 2006 3.8-230 µg/kg dw 17 (15 surface and 2 cores)   Zhang et al. 2009
Sediment South China, Liuyang river; 2009   18 samples 143.4 to 10183.41 µg/kg (ng/g)
(instrument detection limit:40 pg)
Qu et al. 2011
Soil China, Beijin; May-July 2011 26 – 104 mg/kg dw (e-waste recycling site)
Not detected – 5.6 mg/kg dw (farmlands)

4

11

  Xu et al. 2012
Table 6. Measured concentrations of TBBPA and TBBPA bis(allyl ether) in the ambient environment and sewage sludge (continued)
Medium Location; year TBBPA Concentration* Samples TBBPA bis(allyl ether)
concentration
TBBPA Concentration*
Soil Spain; no year 3.4-32.2 µg/kg dw (industrial) n.s.   Sanchez-Brunete et al. 2009
Soil United States; no year 222 000 µg/kg Footnote Table 6d n.s   Pellizzari et al. 1978
Soil Israel; no year 450 000 µg/kg d n.s   Arnon 1999
Soil South China, Liuyang river; 2009   18 samples n.d. to 41.7µg/kg (ng/g)
(instrument detection limit:40 pg)
Qu et al. 2011
Sewage sludge Canada; 2010 to 2011 53–195 mg/kg dw in 4 of 40   Smyth 2013
Sewage sludge Quebec dried sludge; Oct 2003 330 ug/kg dw; 310 µg/kg dw
(330 ng/g dw and 310 ng/g dw)
1 sample, 8 analyses (2 mean values with n=3 and 5)   Saint-Louis and Pelletier 2004
Sewage sludge Canada; 1994 to 2001 less than 1–46.2 µg/kg dw in 34 of 35   Lee and Peart 2002
Sewage sludge Ontario; 2002 9.04–43.1 µg/kg dw 7   Quade 2003
Sewage sludge Spain (Catalonia); 2009 nd – 472 mg/kg dw
(mean = 104 mg/kg dw; median = 96.7 mg/kg dw)
17 3.00 mg/kg (ng/g) dw Gorga et al. 2013
Sewage sludge
Municipal wastewater treatment plants
Industrial wastewater treatment plant

Korea, Busan city; n.s.

Korea, Ulsan city; n.s.

 

67.1 – 618 mg/kg dw

 

4.01 - 144 mg/kg dw

 

4

 

7

  Hwang et al. 2012
Sewage sludge United States; 1999 to 2001 2.98–196 µg/kg dw 7   Quade 2003
Sewage sludge
Influent (liquid)
Influent (solid)
United Kingdom; no year 54–112 µg/kg dw
less than 0.015–0.0852 µg/L
21.7 µg/kg dw
in 5 of 5
in 4 of 5
in 1 of 5
  de Boer et al. 2002
Sewage sludge
Influent (solid)
Influent (liquid)
Effluent
Southeast England; 2002 15.9–112 µg/kg dw
less than 3.9–21.7 µg/kg dw
0.0026–0.085 µg/L
less than 3.9 µg/kg dw
5
5
5
5
  Morris et al. 2004
Sewage sludge Ireland; no year less than 0.1–192 µg/kg dw in 5 of 6   Morris et al. 2004
Table 6. Measured concentrations of TBBPA and TBBPA bis(allyl ether) in the ambient environment and sewage sludge (continued)
Medium Location; year TBBPA Concentration* Samples TBBPA bis(allyl ether)
concentration
TBBPA Concentration*
Sewage sludge Sweden; 1988 31–56 µg/kg dw 2   Sellström and Jansson 1995
Sewage sludge Sweden; 1997 to 1998 3.6–45 µg/kg dw n.s   Sellström 1999;
Sellström et al. 1999
Sewage sludge Sweden; 1999 to 2000 less than 0.3–220 µg/kg ww 57   Öberg et al. 2002

Sewage sludge

Influent

Effluent

Germany; no year less than 0.2–34.5 µg/kg dw (TBBPA)
less than 0.2–11.0 µg/kg dw
(Me-TBBPA2)
0.00086–0.0174 µg/L (TBBPA)
less than 0.0002–0.025 µg/L (TBBPA)
less than 0.0002–0.00145 µg/L
(Me-TBBPAc)

in 11 of 12

in 7 of 12
in 5 of 5
in 10 of 19

in 5 of 19

  Kuch et al. 2001
Sewage sludge Germany; no year 0.6–62 µg/kg dw 32   Metzger and Kuch 2003
Wastewater
Influent (filtered)
Influent raw (unfiltered)
Effluent
South Africa, Vereeniging region; n.s.

 

6,629 mg/L (TBBPA)

6.806 mg/L (TBBPA)
3.269 mg/L (TBBPA)

 

1 (250 mL)

1 (250 mL)
1 (250 mL)

  Chokwe et al. 2012

Sewage sludge

Effluent (solid phase)

The Netherlands; no year 2.8–600 µg/kg dw (TBBPA)
less than 0.1–5.5 µg/kg dw
(Me-TBBPAc)
37–62 µg/kg dw (TBBPA)
less than 0.1–0.6 µg/kg dw
(Me-TBBPAc)

in 10 of 10
in 3 of 10

in 5 of 5
in 3 of 5

  de Boer et al. 2002
Sewage sludge
Influent
Effluent
The Netherlands; 2002 2–600 µg/kg dw
less than 6.9 µg/kg dw
3.1–63 µg/kg dw
8
5
5
  Morris et al. 2004

Top of Page

Table 7. Measured concentrations of TBBPA and TBBPA bis(allyl ether) in biota
Organism Location; year TBBPA Concentration* Samples TBBPA bis(allyl ether)
concentration
Reference
Bottlenose dolphin
Bull shark
Atlantic sharpnose shark
Florida; 1991 to 2004 0.056–8.48 μg/kg lw
0.035–35.6 μg/kg lw
0.495–1.43 μg/kg lw
in 15 of 15
in 13 of 13
in 3 of 3
  Johnson-Restrepo et al. 2008
Harbour porpoise United Kingdom; 1996 to 2000 3.9–376 µg/kg ww 4   Law et al. 2003
Starfish
Whiting
Cormorant
United Kingdom; 1999 to 2000 4.5 µg/kg ww
less than 4.8–3.3 µg/kg ww Footnote Table 71.6
0.07–0.28 µg/kg ww
1
in 1 of 2
in 5 of 5
  de Boer et al. 2002
Harbour porpoise
Cormorant
United Kingdom; no year 0.05–376 µg/kg ww
0.07–10.9 µg/kg ww
in 8 of 25
in 7 of 28
  CEFAS 2002
Harbour porpoise
Cormorant
Sea star
Hake
United Kingdom; 1998 to 2001 0.1–418 µg/kg lw
2.5–14 µg/kg lw
205 µg/kg lw
less than 0.2 µg/kg lw
5
5
1
1
  Morris et al. 2004
Cod
Whiting
Hermit crab
Sea star
Whelk
Harbour porpoise
North Sea; 1999 to 2000 less than 0.1–0.8 µg/kg ww
less than 97–245 µg/kg lw
less than 1–35 µg/kg lw
less than 1–10 µg/kg lw
5–96 µg/kg lw
0.05–376 µg/kg ww
in 1 of 2
in 2 of 3
in 5 of 9
in 2 of 3
in 3 of 3
in 5 of 5
  de Boer et al. 2002
Whelk
Hermit crab
Whiting
Cod
Harbour porpoise
Harbour seal
North Sea; 1999 5.0–96 µg/kg lw
less than 1–35 µg/kg lw
less than 97–245 µg/kg lw
less than 0.3–1.8 µg/kg lw
less than 11 µg/kg lw
less than 14 µg/kg lw
3
9
3
2
4
2
  Morris et al. 2004
Baltic salmon Finland; 1993 to 1999 2.0–5.0 µg/kg ww in 2 of 10   Peltola 2002
Predatory birds’ eggs Norway; 1992 to 2002 less than 0.004–0.013 µg/kg ww in 8 of 8   Herzke et al. 2005
Eel Norway; 2003 0.3 µg/kg lw n.s Footnote Table 72.5   Schlabach et al. 2004
Blue mussel
Cod
Moss
Norway; no year 0.01–0.03 µg/kg ww
0.08–0.16 µg/kg ww
0.019–0.89 µg/kg ww
in 6 of 6
in 6 of 6
in 11 of 11
  SFT 2002
Atlantic cod Norway; no year 0.5–2.5 µg/kg lw 2   Fjeld et al. 2004
Eel
Perch
Pike
Germany; 1998 to 1999 0.045–0.10 µg/kg ww
0.033 µg/kg ww
0.021 µg/kg ww
2
1
1
  Kemmlein 2000
Eel Belgium; 2000 less than 0.1–13 µg/kg ww 19   Morris et al. 2004

Common tern eggs

Eel

The Netherlands; 1999 to 2000 NDFootnote Table 73.3 (TBBPA)
0.4–0.8 µg/kg ww
(Me-TBBPAFootnote Table 74.3)
less than 0.1–2.6 µg/kg ww (TBBPA)
less than 0.1–2.5 µg/kg ww
(Me-TBBPA4)

10
in 4 of 10

in 6 of 18

in 7 of 18

  de Boer et al. 2002
Common tern
Eel
The Netherlands; 1999 to 2001 less than 2.9 µg/kg ww
less than 0.1–1.3 µg/kg ww
10
11
  Morris et al. 2004
Mussel
(Mytilus edulis)
Japan; 1981 n.d. 3 (TBBPA)
5 µg/kg ww (Me-TBBPA4)
n.s 2   Watanabe et al. 1983
Fish and shellfish Japan; 1983 n.d. 3 to 4.6 µg/kg ww
(Me-TBBPA4)
in 2 of 19   Watanabe and Tatsukawa 1989
Sea bass Japan; 1986 to 2000 3.4–23 µg/kg lw n.s 2   Ohta et al. 2004
Lake trout Lake Ontario; 1997 to 2004   in 5 of 30 0.2 – 1.7 µg/kg ww
(ng/g ww)
Ismail et al. 2006
Gull herring eggs Eastern Great lakes and St. Lawrence River; 2008 to 2009   83% of samples (concentrations reported for 8 samples) 0.08 – 0.56 µg/kg ww (ng/g ww) Letcher and Chu 2010

Top of Page

Table 8. Representative input values used for estimating aquatic concentrations resulting from industrial releases of TBBPA
Input Value Scenario #1 Value
Scenario #2
Justification and reference
Quantity (kg) 1,000,000 10,000 - 100,000 Lower and upper range of mass in commerce
Loss to wastewater (%) No water discharge   0.21% Loss to water based on company activities. ESD on Plastic Additives, Chapter 15
(OECD 2004)
Wastewater system removal efficiency (%) Not Applicable 93% Standard sewage treatment plants in Canada have primary or secondary treatment in place.
Number of annual release days (days)

 

Not Applicable

250 Site specific information (Environment Canada 2013)  
Dilution factor (–) Not Applicable 10 Site specific information (Environment Canada 2013)  

Top of Page

Table 9. Representative input values used for estimating aquatic concentrations resulting from industrial releases of TBBPA bis(allyl ether)
Input Value Scenario #1 Value
Scenario #2
Justification and reference
Quantity (kg)  1,000,000  100,000 Upper and lower range of mass in commerce
Loss to wastewater (%)  0.21%  0.21% Loss to water based on company activities. ESD on Plastic Additives, Chapter 15
(OECD 2004)
Wastewater system removal efficiency (%) 59.8 93 Standard sewage treatment plants in Canada have primary or secondary treatment in place.
Number of annual release days (days) 250 250 250 days considered “worst case” for HPV substance.
(European Commission 2003)  
Dilution factor (–) 10 10  

Top of Page

Table 10. Summary of key toxicity studies used in the ecological effects assessment of TBBPA, TBBPA bis(2-hydroxyethyl ether) and TBBPA bis(allyl ether)
Species, life stage Test material Study design Effect leve (endpoint and value) Reference
Crassostrea virginica, eastern oyster TBBPA: 100% active ingredient
  • 96-hour flow-through using natural, unfiltered seawater
  • measured concentrations: 0, 0.018, 0.032, 0.051, 0.087 and 0.15 mg/L
  • 40 oysters per treatment
  • 19–20°C, pH 7.9–8.1, DO 6.3–7.9 mg/L, 33–34 ppt
  • GLP; in-house protocol based on US EPA 1985a, b
  • 96-hour EC50 (95% CI) (shell deposition) = 0.098 (0.020–0.210) mg/L
  • 96-hour LOEC (shell deposition) = 0.018 mg/L (mean measured)
  • 96-hour NOEC could not be determined, since an effect was seen at the lowest concentration tested; estimated NOEC = 0.0026 mg/L
Brominated Flame Retardants Industry Panel 1989a
Mytilus edulis, common mussel TBBPA: purity 99.2%
  • 70-day flow-through using filtered, natural seawater
  • measured concentrations: 0, 0.017, 0.032, 0.062, 0.126 and 0.226 mg/L
  • 30 mussels per treatment
  • 15±1°C, pH 7.9–8.1, DO 7.2–8.2 mg/L, 34.5–35.5 ppt
  • GLP
  • 70-day LOEC (shell length) = 0.032 mg/L
  • 70-day NOEC (shell length) = 0.017 mg/L
  • 70-day LOEC (wet tissue weight) = 0.126 mg/L
  • 70-day NOEC (wet tissue weight) = 0.062 mg/L
  • 70-day LOEC (dry tissue weight) = 0.032 mg/L
  • 70-day NOEC (dry tissue weight) = 0.017 mg/L
  • dry tissue weight data not strictly dose-responsive
ACCBFRIP 2005b, c
Daphnia magna, water flea (less than 24 hours old at test initiation) TBBPA: 100% active ingredient
  • 21-day flow-through using well water
  • measured concentrations: 0, 0.056, 0.10, 0.19, 0.30 and 0.98 mg/L
  • 40 daphnids per treatment
  • 20 ± 1°C, pH 8.1–8.2, DO 8.0–8.7 mg/L, conductivity 498 mmhos/cm, hardness 170 mg/L as CaCO3, alkalinity 120 mg/L as CaCO3
  • GLP; in-house protocol based on US EPA 1985c
  • 21-day LOEC (survival, growth) greater than 0.98 mg/L
  • 21-day NOEC (survival, growth) greater than or equal to 0.98 mg/LFootnote Table 101.7
  • 21-day LOEC (reproduction) = 0.98 mg/L
  • 21-day NOEC (reproduction) = 0.30 mg/L
  • 21-day LOEC (overall study) = 0.98 mg/L
  • 21-day NOEC (overall study) = 0.30 mg/L
  • 21-day MATC (overall study) = 0.54 mg/L
Brominated Flame Retardants Industry Panel 1989g
Daphnia magna, water flea (less than 24 hours old at test initiation) TBBPA: composition from 3 manufacturers; purity 99.17%
  • 48-hour flow-through using well water
  • 10 per replicate, 2 replicates per treatment
  • 20 °C, pH 8.1-8.2, hardness 131 mg/L, DO greater than 8.6 mg/L
  • measured concentrations: 1.2 and 1.8 mg/L
  • OECD 202  limit test
  • Immobility 48-h NOEC greater than 1.8 mg/L
Wildlife International  2003
Acartia tonsa, copepod (adults used for acute test; eggs and juveniles used for chronic test) TBBPA: composition and purity not given
  • 2-day acute and 5-day larval development static renewal tests using saltwater
  • concentration series not specified
  • 30–40 eggs per beaker, number of replicates per treatment not provided
  • 20±0.5°C, 18 ppt
  • acute test performed according to ISO 1999
  • 2-day LC50 (95% CI) = 0.40 (0.37–0.43) mg/L
  • 5-day EC50 for larval development rate (95% CI) = 0.125 (0.065–0.238) mg/L
Wollenberger et al. 2005;
Breitholtz et al. 2001
Skeletonema costatum, Thalassiosira pseudonana, marine algae TBBPA: composition and purity not given
  • 72-hour static test
  • concentration series not specified
  • six nutrient media
  • pH 7.6–8.2, 30 ppt
  • population density estimated by cell counts using a haemocytometer
  • 72-hour EC50 = 0.09–0.89 mg/L for S. costatum
  • 72-hour EC50 = 0.13–1.00 mg/L for T. pseudonana
Walsh et al. 1987
Pimephales promelas, fathead minnow (embryos and larvae) TBBPA: 100% active ingredient
  • 35-day flow-through using well water
  • 5-day embryo and 30-day larval exposure
  • measured concentrations: 0, 0.024, 0.040, 0.084, 0.16 and 0.31 mg/L
  • 120 embryos, 60 larvae per treatment
  • 24°C, pH 7.0–8.2, DO 8.1–8.6 mg/L, hardness 28–29 mg/L as CaCO3, alkalinity 23–24 mg/L as CaCO3, conductivity 120–140 mmhos/cm
  • GLP; in-house protocol based on US EPA Final Test Rule Fed. Reg. Vol. 52, No. 128
  • 35-day LOEC (overall study, based on embryo survival) = 0.31 mg/L
  • 35-day NOEC (overall study) = 0.16 mg/L
  • MATC = 0.22 mg/L
Brominated Flame Retardants Industry Panel 1989i
Oncorhynchus mykiss, rainbow trout (juvenile) TBBPA: composition and purity not given
  • 1-, 4-, 14- and 28-day tests
  • concentration series not specified
  • endpoints: hepatic detoxification and antioxidant enzymes, liver somatic index, blood plasma vitellogenin
  • EROD-activity significantly inhibited after 4 days at doses of 100 and 500 mg/kg
  • trend towards EROD inhibition when injected together with EROD-inducer β-aphthoflavone
  • glutathione reductase activity decreased after 1 day at 100 mg/kg but significantly increased after 4, 14 and 28 days at same dose, suggesting TBBPA is possible inducer of oxidative stress
  • no elevation of vitellogenin levels; no detectable estrogenicity
  • no significant effect on LSI
Ronisz et al. 2001
Oncorhynchus mykiss, rainbow trout (immature, 80–120 g) TBBPA: composition and purity not given
  • 18-day flow-through
  • dose: 50 mg/kg fish
  • 10 fish per treatment
  • 11–14°C
  • dose delivered on days 0, 6 and 12
  • blood samples collected prior to and 6 days following last injection
  • vitellogenin quantification by ELISA (enzyme-linked immunosorbant assay)
  • no induction of vitellogenin synthesis
  • authors reported TBBPA tested positive for estrogenic activity in vitro using another monitoring method, the E-screen (Körner et al. 1998)
Christiansen et al. 2000
Table 10. Summary of key toxicity studies used in the assessment of TBBPA, TBBPA bis(2-hydroxyethyl ether) and TBBPA bis(allyl ether) (continued)
Species, life stage Test material Study design Effect level (endpoint and value) Reference
Danio rerio, zebrafish (adults and eggs) TBBPA: 99.17% purity
  • adults: 30-day semi-static
  • 47-day and 3-day egg exposure
  • nominal concentrations: 0, 0.047, 0.094, 0.188, 0.375, 0.750, 1.5, 3.0 and 6.0 μM
  • 3 male and 3 female adult fish per treatment with duplicate controls
  • 100 eggs per treatment for 47-day exposure; 12 eggs per treatment for 3-day exposure
  • 27±2°C, pH 7.2–8.4, DO greater than or equal to 5 mg/L, 14:10-hour light:dark cycle
  • 30-day LOEC (acute) = 3.0 μM (1.63 mg/L)
  • 30-day NOEC (acute) = 1.5 μM (0.816 mg/L)
  • 30-day LOEC (egg production) = 0.047 μM (0.026 mg/L)
  • 30-day NOEC (egg production) = 0.023 μM (0.013 mg/L)
  • 47-day LOEC (hatching) = 0.023 μM (0.013 mg/L)
  • 47-day NOEC (hatching) less than  0.023 μM (0.013 mg/L)
  • 3-day LOEC (development) = 3.0 μM (1.63 mg/L)
  • 3-day NOEC (development) = 1.5 μM (0.816 mg/L)
Kuiper et al. 2007
Lumbriculus variegatus, oligochaete (adult) TBBPA: 98.91% active ingredient
  • 28-day flow-through using filtered well water, hardness 127–128 mg/L as CaCO3
  • nominal concentrations: 0, 90, 151, 254, 426, 715 and 1200 mg/kg dw of sediment
  • 80 animals per treatment
  • Two trials with different artificial sediments: (i) 83% sand, 9% clay, 8% silt, 2.5% OC, water-holding capacity 10.7%, 23 ± 2°C, pH 6.8–8.3, DO 3.8–8.0 mg/L, gentle aeration from day 6 to test end (ii) 80% sand, 14% silt, 6% clay, 5.9% OC, water-holding capacity 13.9%, 23±2°C, pH 7.5–8.3, DO 4.2–7.9 mg/L, gentle aeration from day 7 to test end
  • GLP, protocol based on Phipps et al. 1993, ASTM 1995 and US EPA 1996a

For 2.5% OC sediment:

  • 28-day EC50 (survival and reproduction) = 294 mg/kg sediment dw
  • 28-day LOEC (survival and reproduction) = 151 mg/kg sediment dw
  • 28-day NOEC (survival and reproduction) = 90 mg/kg sediment dw
  • LOEC/NOEC for growth could not be determined as no clear dose-response was obtained

For 5.9% OC sediment:

  • 28-day EC50 (survival and reproduction) = 405 mg/kg sediment dw
  • 28-day LOEC (survival and reproduction, growth) = 426 mg/kg sediment dw
  • 28-day NOEC (survival and reproduction, growth) = 254 mg/kg sediment dw
ACCBFRIP 2002c, d
Chironomus tentans, midge (second instar larvae at test initiation) TBBPA: 99.15% active ingredient
  • 14-day flow-through using well water
  • measured concentrations: 0, 0.07, 0.12, 0.20, 0.41 and 0.85 mg/L
  • 50 larvae per treatment
  • 21–22°C, pH 6.9–7.8, DO 7.7–8.6 mg/L, conductivity 120–130 mmhos/cm, hardness 29–30 mg/L as CaCO3, alkalinity 25–28 mg/L as CaCO3
  • water-only testing with thin (~2 mm) sediment layer
  • GLP; in-house protocol based on Adams et al. 1985 and ASTM 1988
  • 14-day LC50 (95% CI) = 0.13 (0.11–0.15) mg/L
  • 14-day LOEC (survival) = 0.20 mg/L
  • 14-day NOEC (survival) = 0.12 mg/L
  • 14-day LOEC (growth) = 0.07 mg/L
  • 14-day NOEC (growth) could not be determined as an effect was seen at the lowest concentration tested
Brominated Flame Retardants Industry Panel 1989h
Table 10. Summary of key toxicity studies used in the assessment of TBBPA, TBBPA bis(2-hydroxyethyl ether) and TBBPA bis(allyl ether) (continued)
Species, life stage Test material Study design Effect level (endpoint and value) Reference
Chironomus tentans, midge (second instar larvae at test initiation) TBBPA: 99.15% active ingredient
  • 14-day flow-through using well water and streambed sediment
  • measured concentrations: 6.8% OC: 0, 16, 44, 66, 110 and 340 mg/kg dw; 2.7% OC: 0, 16, 31, 65, 130 and 240 mg/kg dw; 0.25% OC: 0, 15, 24, 52, 110 and 230 mg/kg dw
  • 50 larvae per treatment
  • hardness 27–29 mg/L as CaCO3, alkalinity 23–26 mg/L as CaCO3; conductivity 120–130 mmhos/cm
  • 3 tests; (i) 92% sand, 6% silt, 2% clay, 6.8% OC, 16% soil moisture, 22°C, pH 6.4–8.3, DO 5.2–6.7 mg/L (ii) 93% sand, 1% silt, 6% clay, 2.7% OC, 6.8% soil moisture, 22°C, pH 6.4–7.9, DO 6.2–7.3 mg/L (iii) 94% sand, 2% silt, 4% clay, 0.25% OC, 1.7% soil moisture, 22°C, pH 6.9–7.8, DO 7.0–8.0 mg/L
  • GLP; in-house protocol based on Adams et al. 1985 and ASTM 1988
  • survival negative controls: 44–64% (6.8% OC), 8–24% (2.7% OC), 4–24% (0.25% OC)
  • survival solvent controls: 60–76% (6.8% OC), 72–76% (2.7% OC), 76–92% (0.25% OC)
  • based on comparison with solvent controls, midge survival and growth was not significantly different in any treatment
  • no-effect concentrations based on solvent controls: 340 mg/kg (6.8% OC), 240 mg/kg (2.7% OC) and 230 mg/kg (0.25% OC)
Brominated Flame Retardants Industry Panel 1989h
Chironomus riparius, midge (first instar larvae at test initiation) TBBPA: 99.2% purity
  • 28-day static-renewal using filtered well water and artificial sediment
  • nominal concentrations: 0, 63, 125, 250, 500 and 1000 mg/kg sediment dw
  • 80 larvae per treatment
  • 19.0–21.3°C, pH 7.7–8.6, DO 5.9–8.9 mg/L, NH3 less than 0.017–0.290 mg/L
  • GLP; in-house protocol based on OECD 2001b
  • 28-day EC50 (emergence) = 235 mg/kg dw with 95% CI of 207 and 268 mg/kg dw
  • 28-day LOEC (emergence ratio, development rate, development time) = 250 mg/kg dw
  • 28-day NOEC (sediment ratio, development rate, development time) = 125 mg/kg dw
ACCBFRIP 2005d
Table 10. Summary of key toxicity studies used in the assessment of TBBPA, TBBPA bis(2-hydroxyethyl ether) and TBBPA bis(allyl ether) (continued)
Species, life stage Test material Study design Effect level (endpoint and value) Reference
Hyalella azteca TBBPA:
composition with a purity of 99.2%
  • 28-day flow-through using well water
  • artificial sediment: 5.7% OC; 0.01% humic acid, 0.5% dolomite, 13% alpha cellulose, 10% kaolin clay and 77% industrial quartz sand
  • dilution water: 23°C, pH 7.7-8.2, DO greater than 67%,  NH3 less than 0.17 mg/L, hardness 116-132 mg/L
  • measured concentrations: 63, 125, 250, 500 and 1000 mg/kg dry weight
  • 80 amphipods per treatment (8 replicates of 10 each)
  • GLP, protocol based on USEPA (2000) ASTM Standard E 1706-00 and USPEA OPPTS 850.1735
  • 28-day NOEC (survival) = 250 mg/kg sediment dw
  • 28-day NOEC (growth) greater than 1000 mg/kg sediment dw
Wildlife International 2006c
Eisenia fetida, earthworm (adult) TBBPA: 98.91% active ingredient
  • 56-day test
  • measured concentrations: study 1: 0, 326, 640, 1250, 2430 and 4840 mg/kg soil dw; study 2: 0, 0.562, 1.16, 2.11, 4.50, 9.01, 16.7 and 35.4 mg/kg soil dw
  • 80 per control, 40 per treatment
  • artificial soil: 78–79% sand, 8–10% silt, 12–13% clay, 4.5–4.7% OC, pH 5.8–7.5, 18.5–21.9°C, soil moisture 14.6–45.3%
  • GLP, protocol based on OECD 1984a, 2000 and US EPA 1996d
  • 28-day LOEC (survival) greater than  4840 mg/kg soil dw
  • 28-day NOEC (survival) greater than or equal to  4840 mg/kg soil dw1
  • 28-day EC10, 28-day EC50 (survival) greater than 4840 mg/kg soil dw
  • 56-day LOEC (reproduction) = 4.50 mg/kg soil dw
  • 56-day NOEC (reproduction) = 2.11 mg/kg soil dw
  • 56-day EC10 (reproduction) = 0.12 mg/kg soil dw
  • 56-day EC50 (reproduction) = 1.7 mg/kg soil dw
ACCBFRIP 2003
Eisenia fetida, earthworm (adult) TBBPA: 99.2% purity
  • 56-day test
  • nominal concentrations: 0, 0.31, 0.63, 1.3, 2.5, 5.0, 10 and 20 mg/kg soil dw
  • 80 per control, 40 per treatment
  • artificial soil: 77% sand, 6% silt, 17% clay, 4.4% OC, pH 5.8–7.3, 19.5–21.7°C, soil moisture 20.5–32.7%
  • GLP, in-house protocol based on OECD 1984a, 2000, US EPA 1996d and ISO 1998
  • 28-day NOEC (survival) greater than or equal to  20 mg/kg soil dw1
  • 28-day EC10, 28-day EC50 (survival) greater than 20 mg/kg soil dw
  • 56-day LOEC (reproduction) = 0.63 mg/kg soil dw
  • 56-day NOEC (reproduction) = 0.31 mg/kg soil dw
  • 56-day EC10 (reproduction) = less than  0.31 mg/kg soil dw
  • 56-day EC50 (reproduction) = 0.91 mg/kg soil dw
ACCBRIP
2005a
Table 10. Summary of key toxicity studies used in the assessment of TBBPA, TBBPA bis(2-hydroxyethyl ether) and TBBPA bis(allyl ether) (continued)
Species, life stage Test material Study design Effect level (endpoint and value) Reference

Zea mays, corn

Allium cepa, onion

Lolium perenne, ryegrass

Cucumis sativa, cucumber

Glycine max, soybean

Lycopersicon esculentum, tomato

TBBPA: 99.17% active ingredient
  • 21-day test
  • nominal concentrations: 0, 20, 78, 313, 1250 and 5000 mg/kg dw of soil
  • 40 seeds per treatment
  • artificial soil: 49% sand, 30% silt and 21% clay, 2.1% OM, pH 7.79
  • watering with well water using sub-irrigation, 14:10 light:dark photoperiod, 16–32°C, relative humidity 32–70%
  • GLP, in-house protocol based on OECD 1998 and US EPA 1996b,c
  • no apparent treatment-related effects on emergence and seedling condition
  • 21-day LOEC (growth) greater than  5000 mg/kg soil dw and 21-day NOEC (growth) greater than or equal to 5000 mg/kg soil dw1 for soybean
  • 21-day LOEC (growth) = 1250 mg/kg soil dw; 21-day NOEC (growth) = 313 mg/kg soil dw for corn, onion and tomato
  • 21-day LOEC (growth) = 313 mg/kg soil dw; 21-day NOEC (growth) = 78 mg/kg soil dw for ryegrass
  • 21-day LOEC (growth) = 78 mg/kg soil dw; 21-day NOEC (growth) = 20 mg/kg soil dw for cucumber
  • 21-day EC25 (growth) greater than  5000 mg/kg soil dw for corn and soybean; 460 mg/kg for onion; 422 mg/kg for tomato; 73 mg/kg for cucumber, 49 mg/kg for ryegrass
  • 21-day EC50 (growth) greater than  5000 mg/kg soil dw for corn, soybean and tomato, 4264 mg/kg for onion. 1672 mg/kg for cucumber, 459 mg/kg for ryegrass
ACCBFRIP 2002e
Trifolium pratense, red clover TBBPA:
composition and purity not given (purchased from Fluka, Germany)
  • 21-day test
  • nominal concentrations: 0, 1, 3, 10, 100, 300 and 1000 mg/kg dw soil
  • 20 seeds per treatment
  • Danish agricultural soil: 38.4% coarse sand, 23.6% fine sand, 12.7% coarse silt, 12.3% fine silt and 13.0% clay, 1.6% OC
  • 15–25°C, soil pH 6.2, soil moisture 65% of water-holding capacity, 16:8 light:dark photoperiod
  • OECD 1984b
  • no apparent treatment-related effects on seedling emergence or growth
  • 21-day LOEC greater than 1000 mg/kg dw
  • 21-day NOEC greater than or equal to 1000 mg/kg dw1
Sverdrup et al. 2006
Enchytraeus crypticus, earthworm (sexually mature adult) TBBPA: composition and purity not provided (purchased from Fluka, Germany)
  • 21-day test
  • nominal concentrations: 0, 1, 3, 10, 100, 300 and 1000 mg/kg dw soil
  • 40 worms per treatment
  • Danish agricultural soil: 38.4% coarse sand, 23.6% fine sand, 12.7% coarse silt, 12.3% fine silt and 13.0% clay, 1.6% OC
  • 20±1°C, soil pH 6.2, soil moisture 65% of water-holding capacity
  • ISO 2002
  • 21-day LOEC (survival) greater than  1000 mg/kg dw
  • 21-day NOEC (survival) greater than or equal to  1000 mg/kg dw1
  • 21-day LOEC (reproduction) = 10 mg/kg dw
  • 21-day NOEC (reproduction) = 3 mg/kg dw
  • 21-day EC10 (95% C.) = 2.7 (0.7–5.4) mg/kg dw
Sverdrup et al. 2006
Table 10. Summary of key toxicity studies used in the assessment of TBBPA, TBBPA bis(2-hydroxyethyl ether) and TBBPA bis(allyl ether) (continued)
Species, life stage Test material Study design Effect level (endpoint and value) Reference
  • Soil nitrifying bacteria
TBBPA: composition and purity not provided (purchased from Fluka, Germany)
  • 28-day test
  • nominal concentrations: 0, 1, 3, 10, 100, 300 and 1000 mg/kg dw soil
  • Danish agricultural soil: 38.4% coarse sand, 23.6% fine sand, 12.7% coarse silt, 12.3% fine silt and 13.0% clay, 1.6% OC
  • 20°C, soil pH 6.2, soil moisture 57% of water-holding capacity, incubation in the dark
  • based on ISO 1997
  • 28-day LOEC (nitrification) = 1000 mg/kg dw
  • 28-day NOEC (nitrification) = 300 mg/kg dw
  • 28-day EC10 (95% CI) = 295 (210–390) mg/kg dw
Sverdrup et al. 2006
  • Soil microorganisms
TBBPA:
composition, greater than 99% purity
  • 28-day test
  • Nominal concentrations: 10, 32, 100, 316, 1000 mg/kg dw soil, 3 replicates per treatment
  • sand 69%, silt 12%, clay 19%, OC 1.3%, microbial biomass 127 mg/kg dw
  • 20°C, pH 6.9, soil moisture 50% of water-holding capacity, pre-incubation in the dark for 24 days, incubation in the dark for the 28-day test
  • OECD 216
  • 28-day EC10 greater than 1000 mg/kg dw
Wildlife International 2005
  • Coturnix japonica, Japanese quail

Gallus domesticus, domestic chicken (fertilized eggs)

TBBPA: greater than  99% active ingredient
  • single exposure with analysis at 12 days (quail) or 15 days (chicken)
  • 15 or 45 mg/kg injected into egg
  • exposure of fertilized eggs at day 3 of incubation for quail and day 4 for chicken
  • minimum 24 embryonated eggs per dose
  • analysis 2 days before anticipated hatch (day 15 for quail, day 19 for chicken)
  • endpoints: mortality, malformation of Müllerian ducts, feminization of left testis
  • significant embryo mortality at 45 mg/kg egg dose (80% in quail and 96% in chicken)
  • mortality at 15 mg/kg egg dose not statistically different from control
  • no significant effect on Müllerian duct formation or left testis histology
Berg et al. 2001
  • Giardia lamblia, parasitic protozoan
TBBPA: 98.91% active ingredient
  • activated sludge from a waste water treatment plant receiving maily domestic sewage
  • 20-22°C, SSC 3.640 mg/L, pH 7.8
  • test concentration: 15 mg/L in triplicate
  • OECD Guideline 209
  • 3-hour NOEC greater than 15 mg/L
Wildlife International 2002
  • Oryzias latipes, orange-red killifish
TBBPA bis(2-hydroxyethyl ether): composition and purity not given
  • 48-hour test duration
  • no other study details available
  • LC50 = 30 mg/L
CITI 1992

Top of Page

Table 11. Predicted ecotoxicity data for TBBPA, TBBPA bis(2-hydroxyethyl ether) and TBBPA bis(allyl ether)
Organism Effect level
(endpoint and value)
TBBPA
(Log Kow= 5.9)Footnote Table 11*
TBBPA bis(2-hydroxyethyl ether)
(Log Kow = 5.48)*
TBBPA bis(allyl ether)
(Log Kow = 8.71)*
Model
Fish
96-hour LC50
14-day LC50
chronic no-effect level
0.140 mg/LFootnote Table 11 1, Footnote Table 112.6

0.21 mg/L
0.389 mg/L1,2
0.477 mg/L2
0.056 mg/L2
0.000483 mg/L1,2

0.000098 mg/L 1,2
ECOSAR 2011, version 1.10
Daphnid 48-hour LC50
chronic no-effect level
0.156 mg/L2
0.030 mg/L
0.302 mg/L1,2
0.073 mg/L2
0.000912 mg/L 1,2

0.000278 mg/L 1,2
ECOSAR 2011, version 1.10
Mysid shrimp 96-hour LC50 0.035 mg/L1,2 ECOSAR 2011, version 1.10
Green algae 96-hour EC50
chronic no-effect level
0.148 mg/L2
0.220 mg/L2
0.377 mg/L1,2
0.459 mg/L1,2

0.000879 mg/L 1,2
0.005 mg/L 1,2
ECOSAR 2011, version 1.10
Fish 96-hour LC50 1.614 mg/L ASTER 1999
Fish 96-hour LC50 0.0115 mg/L 4.29 mg/L 1.05 mg/L AIEPS
(2003–2007)
Daphnid 48-hour LC50 2.85 mg/L 0.041 mg/L 0.154 mg/L AIEPS
(2003–2007)
Green algae 72-hour EC50 5.51 mg/L 11.25 mg/L 4.01 mg/L AIEPS
(2003–2007)
Fish 96-hour LC50 0.1413 mg/L 0.0015 mg/L 0.0097 mg/LFootnote Table 113.4 TOPKAT 1998, Fathead Minnow LC50 v3.2
Daphnid
EC50 0.6803 mg/L 21.2 mg/L 0.0000102 mg/L3 TOPKAT 2004, Daphnia EC50 v3.1
Fish 96-hour LC50 0.194 mg/L 0.3919 mg/LFootnote Table 114.4 2.0163 mg/L4 OASIS Forecast 2005 (CPOPs 2008) -Acute Toxicity v.01
Daphnid 48-hour LC50 0.1225 mg/L 0.2180 mg/L4

3.4868 mg/L4 OASIS Forecast 2005 (CPOPs 2008) -Acute Toxicity v.01
Earthworm 14-day LC50 478.664 mg/L2 ECOSAR 2011, version 1.10

Top of Page

Table 12. Summary of data used in the ecological risk quotient analysis of TBBPA
Measure Pelagic organisms Benthic organisms Soil organisms Fish-consuming
Wildlife
Predicted exposure concentration (PEC)

 

0.000719 – 0.00719Footnote Table 121.9
mg/L

 

42.08 – 420.75
mg/kg (normalized 100% OC)Footnote Table 124.5

0.000057 mg/kg dwFootnote Table 128.1 0.007 mg/kg bw-dayFootnote Table 1211
Critical toxicity value (CTV) 0.31 mg/LFootnote Table 122.7

 

151 mg/kg dwFootnote Table 125.1

0.12 mg/kg
dwFootnote Table 129.1
1.64 mg/kg bw-dayFootnote Table 1212
Application factor 100Footnote Table 123.5 100Footnote Table 126.1 1006 10Footnote Table 1213
Predicted no-effects concentration (PNEC) 0.0031 mg/L 60.4 mg/kg dw (normalized 100% OC)Footnote Table 127.1 0.0005 mg/kg dwFootnote Table 1210 0.164 mg/kg bw-day
Risk quotient (PEC/PNEC) 0.23 – 2.3 0.7 – 7.0  0.11 0.043

Top of Page

Table 13. Summary of data used in the risk quotient analysis of TBBPA bis(allyl ether)
Measure Pelagic organisms Benthic organisms Fish-consuming Wildlife
Predicted exposure concentration (PEC) 0.0000204 mg/LFootnote Table 131.10 3.29 mg/kg (normalized 100% OC)Footnote Table 134.6 0.00005Footnote Table 137.2 mg/kg bw day
Critical toxicity value (CTV) 0.000098 mg/LFootnote Table 132.8 151 mg/kg dwFootnote Table 135.2 1.635 mg/kg bw dayFootnote Table 138.2
Application factor 1Footnote Table 133.6 100Footnote Table 136.2 10Footnote Table 139.2
Predicted no-effects concentration (PNEC) 0.000098 mg/L 60.4 mg/kg dw (normalized 100% OC)g 0.1635 mg/kg bw dayFootnote Table 1310.1
Risk quotient (PEC/PNEC) 0.21 0.054 0.00031

Page details

Date modified: