Chapter 7 of the Canadian Tuberculosis Standards: Extra-pulmonary tuberculosis

On this page

Authors and affiliations

Leila Barss; Division of Respiratory Medicine, Peter Lougheed Centre, Calgary, Alberta, Canada

William J. A. Connors; Division of Infectious Diseases, Department of Medicine, University of British Columbia, British Columbia Centre for Disease Control, Vancouver, British Columbia, Canada

Dina Fisher; Division of Respiratory Medicine, Peter Lougheed Centre, Calgary, Alberta, Canada

Key points

Diagnosis

Treatment

New and updated recommendations

  1. We conditionally recommend against routine adjunctive corticosteroid use for pleural TB.
  2. We conditionally recommend against routine therapeutic thoracentesis/chest tube drainage for pleural TB-associated effusions.
  3. We conditionally recommend using higher doses of rifampin (greater than 15 mg/kg/day orally up to maximum dose 35 mg/kg/day or 15 mg/kg/day intravenously [IV]) along with standard dose isoniazid, pyrazinamide, and ethambutol, during intensive phase of treatment for drug susceptible TB meningitis (TBM).
  4. We conditionally recommend against using fluoroquinolone for TBM unless there is a concern regarding drug resistance.
  5. We conditionally recommend initial adjunctive corticosteroid treatment in all human immunodeficiency virus (HIV)-negative patients with TB pericarditis. Routine use of adjunctive corticosteroids in people with HIV not on antiretroviral treatment is not recommended. Lack of data means we are unable to provide a specific recommendation on use of adjunctive corticosteroids in people with HIV on antiretroviral treatment with TB pericarditis and suggest assessing on a case-by-case basis pending further study.

1. Introduction

Internationally, pulmonary TB is defined as disease involving the lung parenchyma or tracheobronchial tree. Extra-pulmonary TB (EPTB) is defined as disease involving any other organs and includes pleural and isolated intrathoracic lymph node TB.Footnote 1 This differs from the terminology for reporting in Canada, which classifies TB as either respiratory (lungs and the conducting airways, pleural, fibrosis of the lung, bronchiectasis, pneumonia, pneumothorax, primary, intrathoracic and mediastinal lymph nodes, isolated tracheal or bronchial, laryngitis, nasopharynx, nose and sinus TB) or nonrespiratory (all other disease sites not listed).Footnote 2 This chapter focuses on the diagnosis and treatment of EPTB.

Over the last 10 years in Canada, the incidence of EPTB has remained stable, similar to other low TB-incidence, and low HIV-TB co-infection countries.Footnote 3 Peripheral TB lymphadenitis, pleural TB and abdominal TB have remained the three most common types of EPTB (see Chapter 1: Epidemiology of Tuberculosis in Canada). Impaired host immune status is a risk factor for EPTB and increases associated mortality. Organ transplant recipients, persons with advanced HIV and those undergoing chemotherapy for malignancies are at particularly high risk of life-threatening disease.Footnote 4Footnote 5Footnote 6Footnote 7Footnote 8Footnote 9

2. General diagnostic considerations

A high index of suspicion is paramount to the diagnosis of EPTB. Any delay in diagnosis could increase the risk of morbidity and mortality.Footnote 18 In at-risk patients with fever of unknown origin and site-specific signs and symptoms, or patients with biopsy-proven granulomatous inflammation, appropriate steps should be taken to confirm the diagnosis of TB, including repeat sampling if mycobacterial cultures were not obtained.

Gold-standard phenotypic drug susceptibility testing can only proceed with a viable culture, the results of which can have important treatment implications.Footnote 7Footnote 19Footnote 20 This point cannot be overemphasized: with the rising incidence of drug-resistant TB, especially in foreign-born residents of Canada, it is difficult to provide appropriate treatment when mycobacterial cultures and drug susceptibility test results are not available.

The clinical specimens obtained for diagnostic purposes will depend upon the suspected anatomic site of involvement. In general, tissue biopsy yields positive nucleic acid amplification test (NAAT) and culture results more often than fluid aspiration; both are superior to swabs (see Table 1 for diagnostic yield estimates). Biopsy material for mycobacterial culture should be submitted fresh or in a small amount of sterile saline.Footnote 19Footnote 20 Histopathologic examination requires the specimen to be placed in formalin, which kills the mycobacteria and prevents further culture confirmation.Footnote 19Footnote 20 Common histopathologic findings include necrotizing and non-necrotizing granulomas (Table 1). Loss of host immune function can result in histopathologic findings demonstrating greater suppurative response and less well-formed granulomas.Footnote 88

Table 1. Sensitivity and specificity of diagnostic tests in extra-pulmonary tuberculosis compared to mycobacterial culture as gold standard unless otherwise stated
Site Specimen type Direct stain (ZN) sensitivity Culture sensitivity GeneXpertFootnote a sensitivityFootnote b GeneXpertFootnote a specificityFootnote b GeneXpert UltraFootnote a sensitivityFootnote b GeneXpert UltraFootnote a specificityFootnote b Histopathology and/or cytology sensitivity References
TB lymphadenitis FNA 0.23-0.37 0.17-0.67 0.89 0.86 INS INS 0.62-0.80Footnote d Footnote 10Footnote 11Footnote 12Footnote 13Footnote 14
Excisional biopsy 0.35-0.53 0.71-0.80 0.82Footnote c 0.80Footnote c 0.85-1.00Footnote d
Pleural TB Pleural Fluid 0-0.10 0.10-0.63 0.50 0.99 0.75 0.87 N/A Footnote 14Footnote 15Footnote 16Footnote 17Footnote 18Footnote 19Footnote 20Footnote 21Footnote 22Footnote 23Footnote 24
0.19Footnote d 0.99Footnote d
Closed pleural biopsy 0.13-0.39 0.39-0.67 0.31 0.97 INS INS 0.69-0.97Footnote d
Thoracoscopic pleural biopsy INS 0.41-0.76 0.52Footnote e 1.0Footnote e 1.0Footnote dFootnote f
CNS - meningitis CSF 0.05-0.83Footnote g 0.40-0.87Footnote g 0.71 0.97 0.89Footnote h 0.91Footnote h N/A Footnote 23Footnote 25Footnote 26Footnote 27Footnote 28Footnote 29Footnote 30Footnote 31Footnote 32Footnote 33Footnote 34Footnote 35
0.63Footnote dFootnote h 0.99Footnote dFootnote h
CNS - tuberculoma FNA INS INS INS INS INS INS 0.85-0.92Footnote d
Biopsy (excisional/stereotactic) 0.17-0.38Footnote f 0.5-0.8Footnote f 0.87-1Footnote f 0.89-0.96Footnote f INS INS 1Footnote f
Abdominal TB Feces 0-0.11Footnote i 0.44-0.5Footnote i 0.39Footnote d 0.86Footnote d INS INS INS Footnote 23Footnote 36Footnote 37Footnote 38Footnote 39Footnote 40Footnote 41Footnote 42Footnote 43Footnote 44Footnote 45Footnote 46Footnote 47Footnote 48Footnote 49
Ascitic fluid 0.0-0.06 0.17-0.80 0.5 0.98 INS INS
Peritoneal biopsy 0.02-0.20 0.34-0.92 0.38-0.5Footnote dFootnote f 0.92-1.0Footnote dFootnote f INS INS 0.76-1Footnote d
Intestinal biopsy 0.03-0.14 0.36-0.40 0.08-0.32Footnote dFootnote f 1.0Footnote dFootnote f INS INS 0.16-0.7Footnote d
GU TB - renal Urine 0.15-0.30 0.80-0.90 0.83 0.98 1.00Footnote j 1.00Footnote j N/A Footnote 23Footnote 25Footnote 50Footnote 51Footnote 52Footnote 53Footnote 54Footnote 55Footnote 56Footnote 57Footnote 58Footnote 59Footnote 60Footnote 61Footnote 62Footnote 63Footnote 64Footnote 65Footnote 66Footnote 67Footnote 68Footnote 69Footnote 70Footnote 71
FNA/biopsy 0.29-0.44 0.95-1.0Footnote bFootnote j INS INS INS INS 0.88-0.95Footnote j
GU TB - scrotal Urine 0.20-0.24 0.63-0.93Footnote b 0.83 0.98 INS INS N/A
FNA/biopsy 0.25-0.75 0.8Footnote e INS INS INS INS 0.95Footnote dFootnote e
GU TB – female tract Menstrual fluid 0.03-0.05 0.06-0.19 INS INS INS INS N/A
Endometrial biopsy 0.05-0.57 0.06-0.46 INS INS INS INS 0.07-0.71Footnote d
Bone and Joint TB FNA bone/synovial tissue 0.30-0.36 0.37-0.97 0.95 0.85 0.96Footnote k 0.97Footnote k 0.56-0.97 Footnote 23Footnote 50Footnote 51Footnote 52Footnote 53Footnote 72Footnote 73Footnote 74Footnote 75Footnote 76Footnote 77Footnote 78Footnote 79Footnote 80
Synovial fluid 0.08-0.26 0.50-0.86 0.97 0.90 0.96Footnote k 0.97Footnote k N/A
Paraspinal fluid 0.52-0.59 0.9-0.93 0.97 0.90 0.96Footnote k 0.97Footnote k N/A
Pericardial TB Pericardial fluid 0-0.42Footnote j 0.20-0.86 0.61 0.90 INS INS N/A Footnote 13Footnote 14Footnote 23Footnote 81Footnote 82Footnote 83Footnote 84Footnote 85Footnote 86Footnote 87Footnote 88
Pericardial biopsy 0.38-0.40Footnote j 0.22-1.0 0.71Footnote eFootnote j 1.0Footnote eFootnote j 0.34-0.87Footnote d
Disseminated TBFootnote l Sputum 0.31-0.37 0.32-0.90 INS INS INS INS INS Footnote 23Footnote 89Footnote 90Footnote 91Footnote 92Footnote 93Footnote 94Footnote 95Footnote 96
Bronchial wash 0.20-0.55 0.07-0.71 INS INS INS INS INS
Lung biopsy 0.25-0.43 0.42-0.54 INS INS INS INS 0.63-0.95
Liver biopsy 0.13-0.40 0.33-0.54 INS INS INS INS 0.88-1.00
Bone marrow 0.16-0.25 0.21-0.67 INS INS INS INS 0.56-0.67
Urine 0.00-0.18 0.33-0.67 INS INS INS INS INS
Blood INS 0.20-0.65 0.07-0.56 0.94-1.0 INS INS INS

Notes:
Reported data from single studies and meta-analyses included a minimum of 50 patients unless otherwise noted.
Reported data from single studies come from HIV-negative cohorts or studies with a TB-HIV coinfection rate of less than 5% (where reported and if available). Data from meta-analyses that included studies with HIV prevalence greater than 5% and that reported a difference in diagnostics based on HIV status are noted.

Abbreviations:
ZN, Ziehl-Neelsen; SN, sensitivity; SP, specificity; FNA, fine-needle aspiration; INS, insufficient reported data; CNS, central nervous system; CSF, cerebrospinal fluid; GU, genitourinary; N/A, nonapplicable; HIV, human immunodeficiency virus.

Footnotes:

Footnote a

GeneXpert and GeneXpert Ultra data provided as data from individual NAAT available in single site small studies.

Return to footnote a referrer

Footnote b

Point estimates used for data provided from meta-analyses.

Return to footnote b referrer

Footnote c

Data from Cochrane review does not define method of obtaining biopsy sample.Footnote 14

Return to footnote c referrer

Footnote d

Composite reference standard definition: positive result as the presence of granulomatous inflammation or a positive microbiologic result +/- clinical diagnosis of TB and/or improvement on TB treatment.

Return to footnote d referrer

Footnote e

Single study data.

Return to footnote e referrer

Footnote f

Data limited to two studies (combined n > 50).

Return to footnote f referrer

Footnote g

Higher range sensitivity with larger volume (10 cc, 3 samples) concentrated samples (centrifuged at 3000 g).

Return to footnote g referrer

Footnote h

Majority of people with HIV and from single study.Footnote 32

Return to footnote h referrer

Footnote i

Majority of studies do not explicitly state if abdominal TB or intestinal TB present (many state disseminated disease). Presence of stool AFB and positive culture/Xpert documented in isolated pulmonary disease (primarily in children and HIV/AIDS studies).

Return to footnote i referrer

Footnote j

Less than 50 patients.

Return to footnote j referrer

Footnote k

Biopsy and fluid samples combined.

Return to footnote k referrer

Footnote l

Disseminated TB includes miliary TB, as some included autopsy data did not allow differentiation.

Return to footnote l referrer

Good practice statement:

Anywhere from 10 to 50% of patients with EPTB also have pulmonary involvement; it may, therefore, be possible to confirm a diagnosis of TB (and obtain drug susceptibility testing) with sputa assessments, averting the need for more invasive sampling.Footnote 20

Good practice statement:

3. Clinical presentations by organ-specific site

Clinical presentation, investigations and management by organ specific site are reviewed in the following sections. Evidence for treatment duration and other adjunct measures for each organ site is summarized in Table 3. Examples of published corticosteroid regimens for relevant organ sites are described in Table 2.

Table 2. Examples of published corticosteroid regimens for extra-pulmonary TBTable 2 footnote a

Week number

TBM: ChildrenFootnote 329Footnote 330 (≤14 years)

Clinical status: All

TBM: ChildrenFootnote 329Footnote 330 (≤14 years)

Clinical status: Alert (GCS 15)

TBM: Adults/adolescentsFootnote 196 (>14 years)

Clinical status: Altered LOC (GCS <15) +/- focal neurological deficits (8 wk course)

TBM: Adults/adolescentsFootnote 196 (>14 years)

Clinical status: Alert (GCS 15), no focal neurological deficits (6 wk course)

Pericardial TB adultsFootnote 301 (≥18 years)

Clinical status: HIV-negative

Week 1

DEXA 0.6mg/kg/d IV

PrednisoloneTable 2 footnote a

4 mg/kg/d PO (max 60 mg/d)

DEXA 0.4 mg/kg/d IV

DEXA 0.3 mg/kg/d IV

Prednisolone PO 120 mg PO

Week 2

DEXA 0.6mg/kg/d IV

PrednisoloneTable 2 footnote a

4 mg/kg/d PO (max 60 mg/d)

0.3 mg/kg/d IV

0.2 mg/kg/d IV

90 mg PO

Week 3

DEXA 0.6mg/kg/d IV

PrednisoloneTable 2 footnote a

4 mg/kg/d PO (max 60 mg/d)

0.2 mg/kg/d IV

0.1 mg/d POTable 2 footnote b

60 mg PO

Week 4

DEXA 0.6mg/kg/d IV

PrednisoloneTable 2 footnote a

4 mg/kg/d PO (max 60 mg/d)

0.1 mg/kg/d IV

3 mg/d POTable 2 footnote b

30 mg PO

Week 5+

Tapered through week 8

Tapered through week 8

4 mg/d POTable 2 footnote b decrease by 1 mg/wk

2 mg/d POTable 2 footnote b decrease by 1 mg/wk

Week 5 = 15 mg PO Week 6 = 5 mg PO

Abbreviations: TBM, tuberculosis meningitis; LOC, level of consciousness; GCS, Glascow Coma Scale; DEXA, dexamethasone; IV, intravenous; PO, by mouth; BMRC, modified British Medical Research Council TBM severity grading; GI, gastrointestinal.Footnote 199

Footnotes:

Table 2 footnote a

All corticosteroid doses assume concurrent use of rifampin. If rifampin is not part of TB regimen, then dose adjustment advised.

Return to table 2 footnote a

Table 2 footnote b

Continue as IV if significant GI intolerance or compromise, early switch to PO may be considered in those with prompt improvement and GI tolerance.

Return to table 2 footnote b

Table 3. Summary of evidence for duration of treatment in extra-pulmonary TB with adjunct measures
Site Duration TB treatment Level of guidance Evidence Adjunct measures
Type of Studies Number Consistency Corticosteroids (ref) Other Measures (ref)
Studies (refs) Participants
Pleural 6 months Conditional OBS 4Footnote 122Footnote 123Footnote 124Footnote 125 454 Good Do not useFootnote 126 Drainage not necessaryFootnote 123Footnote 127
Lymph node 6 months Conditional RCT 2Footnote 105Footnote 106 290 Good (-)Footnote a Surgery not necessaryFootnote 98
Abdominal (all forms) 6 months Conditional SRMA 3Footnote 151 328 Good no data no data
Bone and joint 6 months, consider 9-12 months with markers of severe disease Conditional RCT/OBS/Review Review 77 studiesFootnote 183 2,889 Good, two studies with higher relapse rates Dutt et al.Footnote 331
twice weekly self-administered therapy for 9 months and Ramachandran et al.Footnote 332
primarily based on lack of radiograph response
no data Surgical intervention is not routinely recommended as part of treatment in spinal tuberculosis. Surgical treatment of spinal TB should be considered in those with neurologic deterioration and in those less than 15 years of age with significant kyphosisFootnote 161Footnote 185Footnote 189
RCT thoracic/lumbar 2 RCTs Footnote 184Footnote 186 293
Central Nervous System TBM 9-12 months Conditional OBS/SR 18Footnote bFootnote 236 2,098 Good Use for all individuals, dosing guided by age group and disease severity.Footnote 239 See Table 2 for dosing guidance Higher dose rifampin (IV or oral up to maximum dose 35 mg/kg/day) advised during intensive phase of therapyFootnote 223Footnote 224Footnote 225Footnote 229Footnote 333Footnote 334
Routine use fluoroquinolone not advised unless concern about drug resistant TBMFootnote 228Footnote 231
Tuberculoma/archnoiditis 9-12 months Conditional OBS 20Footnote 246 742 Poor Do not use unless clinical significant mass effectFootnote 28Footnote 246
Disseminated 6 months Conditional Expert opinion no data no data no data no data no data
Genitourinary 6 months Urinary OBS 2Footnote 289Footnote 335 200 Good no data no data
Female genital RCT 1Footnote 291 175 N/A – one study
Pericardial 6 months no data OBS 4Footnote 82Footnote 299Footnote 300Footnote 301 660 Good Use for HIV negative populations.
People with HIV not on ARV-do not use.Footnote 296
Limited data for People with HIV on ARV
no data
Ocular 6 months Conditional OBS

4Footnote 303Footnote 314Footnote 316Footnote 317

426 Poor no data no data
Cutaneous 6 months Conditional OBS Case reports and reviews no data no data no data no data

Abbreviations:
ARV, anti-retrovirals; OBS, observational study; RCT, randomized clinical trial; SR, systematic review; SRMA, systematic review meta-analysis.

Footnotes:

Footnote a

(-) Insufficient data.

Return to footnote a referrer

Footnote b

One cohort in SR was unpublished.

Return to footnote b referrer

3.1. Peripheral TB lymphadenitis

Almost all forms of TB involve regional lymphatics and nodes. This section will focus on extrathoracic lymph nodes and, specifically, peripheral TB lymphadenitis.

Mycobacterial involvement of the lymph glands can be secondary to infection from Mycobacterium tuberculosis (M. tuberculosis) as well as other non-TB mycobacteria (NTM).Footnote 97 Unilateral cervical chain involvement is the most common site of TB lymphadenitis (45 to 80%) but lymphadenitis can occur in the supraclavicular and axillary regions, as well as a variety of other nodal sites.Footnote 98Footnote 99Footnote 100 Presentation can be at a single nodal site or in multiple sites.

In general, the disease is most often indolent, and the patient usually presents with an isolated, unilateral, nontender neck mass.Footnote 98 The term "scrofula" has been used historically to describe TB involvement of a cervical lymph node with sinus tract formation or ulceration of the over- lying skin. Non-nodal symptoms are rare, except in people with HIV.Footnote 101Footnote 102

Fine-needle aspiration (FNA) biopsy of affected lymph nodes is a useful initial procedure (see Table 1). If FNA is nondiagnostic, the highest-yield procedure is an excisional lymph node biopsy. If there is high suspicion for an alternate diagnosis (e.g., lymphoma), clinicians may choose to pursue excisional biopsy as the initial diagnostic test. Incisional biopsies are discouraged for initial testing because of the risk of sinus tract formation at the biopsy site in mycobacterial disease.Footnote 103 Swabs are discouraged because of the limited material obtained and because the hydrophobic nature of the mycobacterial cell wall inhibits the transfer of organisms from the swab to the culture media.Footnote 104 Specimens should be submitted for both myco-bacteriologic (smear, culture and NAAT) and histopathologic analysis. Differentiation of M. tuberculosis from M. avium complex is important, as treatment of the 2 conditions is different.

3.1.1. TB lymphadenitis treatment

Two small randomized controls trials that compared 6- versus 9-month treatment courses did not report any difference in treatment completion or relapse rates.Footnote 105Footnote 106 Three systematic reviews that also included observational studies reported the same findings.Footnote 107Footnote 108Footnote 109

Recommendation:

In up to 23% of patients, nodes can appear afresh or enlarge during treatment, possibly as an immune response. This usually will resolve without change in regime or additional therapy and should not be considered evidence of treatment failure.Footnote 110 At the end of treatment, up to 34% of patients may be left with residual nodes and, if after treatment, the nodes enlarge or reappear, this is usually transient.Footnote 107 Such events do not necessarily imply relapse, but repeat FNA for mycobacterial culture should be considered to assess this possibility if the nodes are persistent.Footnote 111Footnote 112

Good practice statement:

3.2. Pleural TB

TB pleural-space disease can range from simple TB pleural effusion to TB empyema. Fever, unilateral pleuritic chest pain and cough are the most frequent presenting symptoms in TB pleural effusion. Dyspnea, night sweats and weight loss are also common.Footnote 113 TB pleural effusion is typically paucibacillary and often culture negative.Footnote 113 In some patients, TB pleural effusion may spontaneously resolve within 2 to 4 months without treatment; however, up to 65% will subsequently develop active TB within the following 5 years.Footnote 114

TB empyema is less common than TB pleural effusion and characterized by purulent pleural space and presence of acid-fast bacilli on fluid microscopy.Footnote 115

TB pleural effusions are usually unilateral and can occur on either side of the chest.Footnote 15Footnote 115Footnote 116 Effusions are usually small to moderate in size but in some cases can occupy over two-thirds of the hemithorax.Footnote 15Footnote 116 Co-existing parenchymal abnormalities on chest x-ray are reported in 19 to 67% of patients.Footnote 17Footnote 116Footnote 117 Chest computed tomography (CT) imaging usually demonstrates smooth pleural thickening with an associated effusion. Parenchymal abnormalities on chest CT are reported in up to 86% of cases.Footnote 117Footnote 118 Pleural ultrasound can assist in diagnostic procedures for pleural TB, but imaging findings are nonspecific.Footnote 119

Even in patients without parenchymal abnormalities on chest x-ray, the yield of induced sputum culture for M. tuberculosis is over 50%.Footnote 15Footnote 120 TB pleural fluid is exudative and typically straw colored. Pleural fluid glucose may be low or normal. Pleural fluid pH is usually above 7.3. The majority of TB pleural effusions are lymphocyte predominant. However, a neutrophil predominance may be seen in the very early stages of infection or if TB empyema develops.Footnote 113Footnote 121 Pleural fluid adenosine deaminase (ADA) testing is not used in Canada (see Chapter 3: Diagnosis of tuberculosis disease and drug-resistant tuberculosis). Diagnosis is based on bacteriologic confirmation (positive acid-fast bacilli [AFB] smear and/or positive culture and/or NAAT), histologic confirmation (granulomas with or without necrosis, and with or without positive AFB smears on pleural biopsy) or typical radiological features with confirmed TB in other sites. The diagnostic yield(s) for pleural TB microbiologic investigations are summarized in Table 1.

Good practice statement:

If pleural and sputum samples are nondiagnostic, pleural biopsy should be considered for definitive diagnosis, given higher diagnostic yield from tissue samples. Timing of pleural biopsy (waiting for final pleural/sputa mycobacterial culture results versus expedited biopsy if NAAT and smears are negative) should be determined on a case-by-case basis, based on patient's clinical scenario.

Biopsy samples should be sent for AFB smear, NAAT and culture (in saline) and for histopathology in cytolyte/ formalin. Either image-guided closed or thoracoscopic pleural biopsy can be performed, dependent on local resources and expertise.

3.2.1. Pleural TB treatment

Data from multiple observational studies has demonstrated high rates of treatment completion with low relapse rate with 6 months of therapy. Medical treatment of TB pleural effusion results in successful outcomes in more than 85% of patients.Footnote 122Footnote 123Footnote 124Footnote 125

Based on data from a Cochrane review, adjunctive corticosteroids may accelerate the resolution of pleural fluid and reduce pleural thickening. However, there is no evidence that steroids impact lung function and steroids are associated with adverse effects.Footnote 126

Two small randomized trials have compared therapeutic drainage (thoracentesis or chest tube) and found conflicting results.Footnote 123Footnote 127 In one study, chest tube drainage did not reduce residual pleural thickening or improve end-of-treatment forced vital capacity (FVC).Footnote 133 In the second study, thoracentesis was associated with less residual fluid and a higher FVC at the end of treatment, though the difference was minimal and likely not clinically significant.Footnote 137

Recommendations:

Good practice statement:

Fevers usually resolve within 2 weeks of treatment initiation but may take up to 2 months for full resolution in some cases.Footnote 113Footnote 128 Paradoxical radiologic worsening may occur early after initiation of therapy in up to 26% of patients.Footnote 118 In most cases, pleural fluid resolves after 6 weeks but may last up to 3 months.Footnote 128

TB empyema is diagnosed based on the presence of purulent fluid in a patient with TB pleural space infection.Footnote 115 Based on expert opinion, drainage and/or decortication is recommended in addition to standard anti-TB therapy.Footnote 113Footnote 129 There are limited data to guide the optimal composition/ duration of therapy or the use of adjunctive treatments such as intrapleural thrombolytics.Footnote 129Footnote 130 Consultation with a TB expert is recommended in this setting.

3.3. Abdominal TB

Abdominal TB can be subdivided into clinically distinct or overlapping presentations, comprising gastrointestinal disease (luminal), peritoneal, visceral, and abdominal lymph node disease. Gastrointestinal and peritoneal forms of TB disease occur most frequently and are the focus of this section. Isolated visceral and abdominal lymph node disease are uncommon forms of abdominal TB.Footnote 131Footnote 132

3.3.1. Gastrointestinal TB

TB may affect any part of the gastrointestinal tract. Ileocecal and jejunoileal involvement are most common (up to 75% of cases), followed by colorectal disease (majority on right side).Footnote 131Footnote 132Footnote 133Footnote 134 Gastrointestinal TB, particularly ileocecal disease, may present with clinical and radiographic features that are indistinguishable from Crohn's disease, such as chronic abdominal pain, constitutional symptoms and a right lower quadrant mass.Footnote 135Footnote 136 Mesenteric lymph node enlargement is more commonly found on diagnostic imaging in patients with gastrointestinal TB than in patients with inflammatory bowel disease.Footnote 137Footnote 138Footnote 139Footnote 140

Diagnostic testing for gastrointestinal TB includes stool studies for M. tuberculosis and, where available, endoscopy for biopsies with multiple dedicated samples sent for both culture/NAAT in saline and histopathology to maximize diagnostic yield. Collectively, these tests may support or confirm diagnosis of TB in up to 70% of cases (see Table 1).Footnote 133Footnote 141Footnote 142Footnote 143

If endoscopy is nondiagnostic, laparoscopy/laparotomy can be considered for definitive diagnosis. An empiric trial of anti-TB therapy may be required in some cases. However, in addition to the usual concerns regarding empiric therapy, partial short-term clinical response of Crohn's disease to anti-TB therapy is well described and may confound diagnosis.Footnote 144 Such delays in Crohn's disease treatment have been shown to worsen long-term outcomes (increased rates of stricture and future surgery).Footnote 135Footnote 144Footnote 145 When empiric TB therapy is pursued, end-of-treatment endoscopy may be helpful in differentiating TB disease as significant or complete mucosal healing is reported in more than 75% of cases.Footnote 133Footnote 143

3.3.2. Peritoneal TB

TB involving the peritoneum presents most commonly (in more than 60% of cases) with abdominal swelling secondary to ascites, often concurrent with abdominal pain, fevers and/ or weight loss.Footnote 38Footnote 40 Individuals with chronic liver disease (particularly alcoholic liver disease), chronic renal disease and HIV are at increased risk.Footnote 7Footnote 18Footnote 146

Radiologic assessment can be helpful but is not diagnostic in peritoneal TB.Footnote 137Footnote 140Footnote 147 Diagnosis of peritoneal TB typically starts with percutaneous sampling of ascites for fluid analysis, microscopy and culture. Assessment of ascitic fluid classically demonstrates a proteinaceous exudative pattern (protein greater than 30 grams per L) with a predominance of lymphocytes (greater than 70%) and a low (less than 11 grams per L) serum ascites albumin gradient (SAAG). However, when TB peritonitis complicates chronic peritoneal dialysis or decompensated cirrhosis, it may not have this typical ascites profile. Ascitic fluid is rarely AFB-smear positive but may culture M. tuberculosis in up to 80% of cases. Larger volume (greater than 1 liter) and concentration of samples are reported to increase culture yield.Footnote 38Footnote 148 If ascitic fluid sampling is nondiagnostic, peritoneal biopsy (diagnostic image-guided or laparoscopic) for AFB smear, culture, NAAT and histopathology should be considered, as diagnostic yield for peritoneal tissues is significantly higher than ascitic fluid alone (See Table 1).Footnote 38Footnote 41Footnote 149 ADA testing is not used in Canada (see Chapter 3: Diagnosis of tuberculosis disease and drug-resistant tuberculosis).

It is important to recognize that peritoneal and other forms of TB can cause an elevation in serum tumor marker CA 125 levels. Given shared radiographic findings with peritoneal carcinomatosis of metastatic ovarian cancer, there are numerous case reports of misdiagnosis of malignancy, underscoring the importance of pursuing tissue and/or culture diagnosis of peritoneal TB.Footnote 39Footnote 150

3.3.3. Abdominal TB treatment

Three clinical trials evaluating treatment of abdominal TB consistently found that 6 months of standard anti-TB treatment is adequate in individuals with drug-susceptible abdominal TB and extension of treatment does not significantly improve clinical cure or relapse risk. The available evidence is limited to HIV-negative individuals and strongest for gastrointestinal forms of abdominal TB.Footnote 151

Surgery should generally be reserved for abdominal TB cases with serious complications, such as perforation, bleeding or obstruction.Footnote 152

Recommendation:

3.4. Bone and joint TB

3.4.1. Spinal/vertebral disease

Spinal or vertebral TB (Pott's disease) involvement is noted in approximately 50% of bone and joint TB cases.Footnote 52Footnote 153Footnote 154Footnote 155

Most patients present with slowly progressive back pain.Footnote 156Footnote 157 Fever and constitutional symptoms are not common unless there is concurrent extraspinal or disseminated disease. Given nonspecific complaints, the diagnosis of spinal TB usually is not made until several months after the beginning of symptoms.Footnote 72Footnote 73Footnote 80Footnote 154Footnote 155Footnote 156Footnote 157Footnote 158Footnote 159Footnote 160Footnote 161Footnote 162 Radiographic findings include loss of vertebral body height and scalloping of vertebral bodies by paraspinous fluid collections; however, these findings are insensitive.Footnote 163 CT and magnetic resonance imaging (MRI) imaging are more sensitive for detection of vertebral and soft-tissue abnormalities associated with spinal TB.Footnote 163 Findings include anterior vertebral involvement of thoracic or lumbar vertebrae adjacent to the endplate with evidence of marrow edema with minimal sclerosis; discitis of intervening disks with preservation of the disk until late in disease; and large paraspinal abscesses (calcification being suggestive of TB). MRI is the modality of choice for assessing spinal cord involvement or damage.Footnote 80Footnote 159Footnote 160Footnote 163Footnote 164Footnote 165Footnote 166Footnote 167Footnote 168

CT-guided needle biopsy of vertebrae and/or aspiration of paraspinal fluid collections have the highest diagnostic yield, outside of surgery, and are the recommended initial diagnostic sampling method (Table 1).Footnote 23Footnote 72Footnote 73Footnote 77 If CT guided sampling cannot be performed or is nondiagnostic, a surgical biopsy can be obtained for definitive diagnosis and to assess for etiologies other than TB osteomyelitis.Footnote 23Footnote 50Footnote 72Footnote 78Footnote 169Footnote 170Footnote 171Footnote 172Footnote 173Footnote 174 It is important to assess the patient for other manifestations of TB disease, as studies have demonstrated that one-third of patients with spinal TB had evidence of TB elsewhere, and the diagnosis of TB disease was made in one-quarter of patients by obtaining nonspinal specimens.Footnote 73

3.4.2. Joint TB (TB arthritis)

Joint TB is usually a mono-arthritis affecting large, weight-bearing joints such as the hip or knee. Symptoms can include swelling, pain and loss of function. Focal signs typically associated with septic arthritis, such as local erythema and warmth, are often missing, as are constitutional symptoms. Cartilage erosion, deformity and draining sinuses have been associated with late presentation. M. tuberculosis has also been associated with prosthetic joint infections. Osteomyelitis affecting other sites in the skeleton is uncommon but has been described.Footnote 52Footnote 175Footnote 176Footnote 177Footnote 178 Multifocal presentations can occur in 15% to 20% of cases, often in immune-suppressed individuals, and can be misinterpreted as metastases or inflammatory arthritis.Footnote 74Footnote 179

Radiologic findings suggestive of joint TB include synovial thickening and joint effusion, however differentiation from other arthritic conditions can be difficult. MRI changes suggestive of joint TB include moderate but uniform thickening of the synovium, as compared with the larger and irregular thickening seen in rheumatoid arthritis. Adjacent fasciitis and cellulitis can be seen in both TB and pyogenic arthritis but are more indicative of a pyogenic arthritis.Footnote 153Footnote 164Footnote 177Footnote 178Footnote 179Footnote 180Footnote 181

Synovial fluid aspirate is a reasonable first step in obtaining a diagnosis of joint TB.Footnote 79Footnote 153Footnote 178Footnote 182 Typical synovial fluid findings are that of an elevated white blood cell count (WBC) (10,000 to 20,000 WBC per ml with neutrophil predominance), decreased glucose (less than 2.2 mmol per L) and elevated protein (greater than 25 g per L).Footnote 79Footnote 153Footnote 157Footnote 178 The yield of synovial-fluid AFB smear is low (19%); however, NAAT and mycobacterial culture synovial-fluid sensitivity is relatively high at 75 to 85%.Footnote 23Footnote 50Footnote 51Footnote 74Footnote 75Footnote 79Footnote 153Footnote 178Footnote 182 Synovial biopsy with sampling for NAAT, mycobacterial smear and culture, as well as histopathology, has high diagnostic yield (94%) and should be obtained if joint TB is still a diagnostic consideration and synovial fluid mycobacteriology assessment is negative (Table 1).Footnote 23Footnote 50Footnote 51Footnote 74Footnote 75Footnote 79Footnote 153Footnote 178Footnote 182

3.4.3. Bone and joint TB treatment

In a review of bone and joint TB treatment with isoniazid (INH) and rifampin (RMP) anti-TB therapy for individuals with drug-susceptible TB (majority of studies were observational cohort in adults and children), a risk of relapse was 1.35% with 6 months of anti-TB therapy (539 individuals studied), 0.86% with 6-12 months of anti-TB therapy (437 individuals studied) and 0.51% with greater than 12 months of anti-TB therapy (1,386 individuals studied).Footnote 183 Similar outcomes were identified in 2 small randomized controlled trials.Footnote 184Footnote 185Footnote 186

Increased risk of failure/relapse has been associated with extensive disease at the outset of treatment (radiographically defined or with evidence of smear positivity at beginning of therapy), evidence of sclerotic bony disease on imaging, and Erythrocyte sedimentation rate (ESR)/C-reactive protein (CRP) (both measures of inflammatory response) elevation at end of treatment.Footnote 162Footnote 183 The definition of cure is difficult in bone and joint TB, and follow-up samples are infrequently obtained to demonstrate lack of mycobacterial growth. Alternative definitions of cure have utilized radiologic markers; however, vertebral x-rays may never return to baseline and studies in spinal TB have shown that 50% of patients will have MRI evidence of TB activity even at the end of 12 months of treatment.Footnote 165Footnote 168Footnote 187 Studies utilizing vertebral CT positron emission tomography (PET) imaging have suggested decrease in PET activity may predict when TB treatment for spinal TB can be safely discontinued, but there is not enough evidence to recommend currently.Footnote 188 Routine surgery for bone and joint TB is not required to achieve cure, but should be considered to treat complications of vertebral TB (neurologic compromise) and joint disease (pain and immobility).Footnote 161Footnote 185Footnote 189

Recommendations:

3.5. Central nervous system (CNS) TB

CNS TB refers to the clinical and pathological spectrum of TBM, spinal TB arachnoiditis and tuberculoma. The epidemiology of CNS TB varies by regional TB prevalence. In areas of high TB prevalence, CNS TB occurs more commonly among children and young adults, whereas TBM predominates and occurs more commonly in adults as reactivation disease in low-prevalence settings. In one retrospective Canadian series, 75% of CNS TB disease was adult TBM.Footnote 190Footnote 191Footnote 192

3.5.1. TBM

TBM is the most severe and rapidly progressive form of TB, meaning suspected cases must be treated as a medical emergency. Young children (less than 5 years) and people with HIV are at greatest risk of TBM. Although classically, TBM is described as a slow progressive meningitis syndrome, 50% of people with TBM are ill for less than 2 weeks before diagnosis.Footnote 193 TBM may have a prodrome of headache, malaise, fever and personality changes, followed by meningismus, cranial nerve palsies and confusion.Footnote 194

Prior to the development of anti-TB therapy, TBM was universally fatal. Despite major advances in diagnosis and treatment, global mortality estimates for TBM remain high (20-40%), with up to 50% of survivors suffering permanent neurologic deficits and long-term disability.Footnote 194Footnote 195Footnote 196Footnote 197 Unfavorable outcomes in TBM correlate with older age, immunosuppression, presence of hydrocephalus and/or vasculitis and more advanced clinical stage at time of presentation.Footnote 193Footnote 198Footnote 199 Prognostic models have been developed for the prediction of unfavorable outcomes among adults (greater than 14 years of age) with TBM.Footnote 198Footnote 200

Neurologic imaging in TBM can support the diagnosis; inform prognosis; and identify a need for neurosurgical intervention. Basal meningeal enhancement on contrast-enhanced CT has high specificity for TBM (greater than 90% in adults and children), further increased by additional findings of infarcts and hydrocephalus that may become more apparent in later-stage disease.Footnote 194Footnote 201 Gadolinium-enhanced MRI of the brain provides improved identification of early disease by visualization of localized leptomeningeal disease, characterization of ischemia and early infarction and superior evaluation of cranial nerve and brain stem involvement, compared with CT. However, both CT and MRI lack diagnostic sensitivity. Typical findings may be less prominent or absent in 15-30% of children, those with early disease, and those with advanced HIV.Footnote 202Footnote 203

Lumbar puncture should be performed when feasible as the preferred diagnostic test for TBM. Early in the disease, cerebrospinal fluid (CSF) measurements are often normal. With disease progression, opening pressure becomes elevated, with low glucose levels (less than 2.5 mmol per L), elevated protein (greater than or equal to 0.5 g per L) and a moderate pleocytosis with lymphocyte/mononuclear cell predominance (100-500 total white cells per mL).Footnote 204 Identification of M. tuberculosis in CSF is the standard for definite diagnosis of TBM (Table 1). However, the paucibacillary nature of TBM limits the diagnostic yield of microbial tests. Large volume sampling (7 to 15 mL, 3 serial samples), concentration of samples, experienced laboratory-technician review and the inclusion of more gene targets in NAATs can maximize diagnostic yield.Footnote 23Footnote 205Footnote 206Footnote 207 Based on the insensitivity of CSF microscopy and diagnostic delay of culture-based methods, NAAT testing should be performed if adequate volume of CSF is available to assist with rapid diagnosis.Footnote 208Footnote 209 Among commercially available NAATs, GeneXpert ULTRA has the best-available evidence supporting high sensitivity and should be used when possible.Footnote 32

3.5.2. TBM treatment

Clinical suspicion of TBM should be based upon presence of epidemiological risk factors and clinical features for TB, as well as relative suspicion of alternate diagnosis. Treatment started during early-stage TBM disease may decrease mortality to less than 10%.Footnote 206Footnote 210Footnote 211Footnote 212

Good practice statement:

An optimal anti-TB therapy regimen for TBM remains uncertain. Current guidelines from the American Thoracic Society/Centers for Disease Control and Prevention/Infectious Diseases Society of America, National Institute for Health and Care Excellence, American Academy of Pediatrics and World Health Organization (WHO) recommend standard dose RMP and INH with pyrazinamide (PZA) during initial two-month intensive phase, with lack of consensus on the best fourth agent.Footnote 213Footnote 214Footnote 215Footnote 216Footnote 217Footnote 218

Based on relatively low CNS penetration of RMP, a series of clinical trials have evaluated the clinical and pharmacokinetic outcomes of higher dose ("intensified") RMP as part of intensive-phase regimens for TBM (in these studies high dose RMP was not given throughout full duration of treatment). Although published studies have not identified an optimal dose or conclusively demonstrated clinical benefit, there are now compelling and consistent findings for both RMP CNS-concentration response correlation and safety studies supporting use of higher-dose RMP regimens.Footnote 219Footnote 220Footnote 221Footnote 222Footnote 223Footnote 224Footnote 225Footnote 226

Recommendation:

In the absence of clinical trial data regarding the optimal fourth drug in a TBM regimen, the American Pediatric Association and the WHO advise the use of streptomycin or ethionamide in place of ethambutol (EMB), based on low CNS penetration of EMB and difficulty monitoring EMB toxicity in children.Footnote 227 Although fluoroquinolones have a favorable CNS-penetration profile, clinical trials evaluating their use as a fourth agent for TBM in adults and children have not shown benefit outside of drug-resistant disease and raise concern about adverse effects.Footnote 228Footnote 229Footnote 230Footnote 231 Second-line drugs with favorable CNS-penetration profiles (linezolid, ethionamide) lack adequate quality clinical data to support standard use at this time.Footnote 232Footnote 233Footnote 234Footnote 235Footnote 219

Recommendation:

No clinical trials have directly assessed duration of anti-TB treatment for CNS TB. A review of TBM observational studies did not find increased relapse among those treated for 6 months.Footnote 236 However, given concerns about variable CNS drug penetration and potential for significant harm from relapsed disease if undertreated, current American, British and WHO guidelines continue to recommend a minimum of nine months and up to 12 months of anti-TB therapy for all forms of drug-susceptible CNS-TB.Footnote 190Footnote 214Footnote 217Footnote 237Footnote 238 Based on poor evidence for extended duration of therapy, if issues with anti-TB therapy tolerance occur, then continuation beyond 6 months should be reevaluated in consultation with an expert in TB.

Recommendation:

In addition to anti-TB therapy, measures to mitigate elevated intracranial pressure and prevent hydrocephalus and infarction are important. Adjunctive steroids have been shown to reduce short-term mortality of TBM but have not been demonstrated to reduce disabling neurologic defects or longer-term survival.Footnote 194Footnote 197Footnote 239Footnote 240 (Table 2 Corticosteroid Dosing).

Recommendation:

Several small controlled trials using aspirin (ASA), in addition to anti-TB therapy and corticosteroids, for TBM in both adults and children have suggested potential benefit (reduction of new infarctions and decrease in 60-day mortality) without added harm. Studied ASA regimens ranged from 81 to 1000 mg per day for the initial 1-2 months of treatment.Footnote 241Footnote 242 Given the preliminary nature of these findings, recommendation for the addition of ASA to TBM treatment cannot be made at this time but may change with results from pending studies in both adults and children.Footnote 243Footnote 244

Several large clinical studies evaluating TBM treatment are currently underway (INTENSE-TBM, HARVEST, and TBM-KIDS) and guideline recommendations will be refined as data from the trials become available.Footnote 219Footnote 220Footnote 221

3.5.3. Tuberculoma and spinal TB arachnoiditis

Both tuberculoma and spinal TB arachnoiditis may occur with TBM. Spinal disease (often clinically occult) has been reported in up to 76% of TBM cases and brain tuberculomas in approximately 10% of TBM cases, with even higher prevalence in people with HIV.Footnote 195Footnote 242Footnote 245 When presenting in isolation, symptoms are more typically subacute and neurologic in nature relating to mass effect (headache and/or focal neurologic signs of hemiplegia, nerve root compression and spinal cord syndromes), in contrast to the more acute infectious and inflammatory presentation of TBM.Footnote 191Footnote 212

Contrast-enhanced CT and gadolinium-enhanced MRI can demonstrate solitary or multiple ring-enhancing lesions suggestive of tuberculoma in the brain and spinal cord. MRI offers improved visualization of spinal TB arachnoiditis and associated epidural space infection, myelitis, spondylitis and nerve root involvement.Footnote 201 When possible, a tissue/microbiologic diagnosis should be pursued prior to treatment initiation (Table 1). If empiric therapy is commenced, it is important to note that paradoxical clinical (30%) and radiographic (65%) worsening during the first 6 months of effective therapy is common and confounds assessment of treatment response. Follow-up neuroimaging should be used primarily to evaluate for alternate diagnoses and complications, and be interpreted in concert with clinical and microbiological information.Footnote 246

3.5.4. Tuberculoma treatment

There are no controlled trials evaluating optimal management of either tuberculoma or TB arachnoiditis. Recommendations for treatment duration and adjunctive corticosteroids are extrapolated from observational and clinical trial data for TBM.Footnote 246

Good practice statement:

Extrapolating from other inflammatory parenchymal CNS diseases (i.e., cancer) and limited observational data, corticosteroids may have a limited role for symptom relief in the context of tuberculomas with vasogenic edema-associated neurologic symptoms.Footnote 190

Recommendation:

The Tuberculosis Meningitis International Research Consortium has compiled a collection of peer-reviewed, open-access expert reviews to address the rapidly evolving field of CNS-TB diagnosis and management. A comprehensive review of the management of complications associated with CNS-TB has also recently been by published by Donovan et al.Footnote 247

3.6. Disseminated TB

Disseminated TB is defined as disease occurring in two or more noncontiguous organs or the isolation of M. tuberculosis in blood, bone marrow or liver biopsy.Footnote 21 Miliary TB is a distinct subset of disseminated TB, one that comes with increased mortality.Footnote 248 Hematogenous dissemination of TB in miliary disease causes formation of minute tubercles throughout multiple organs, often resulting in characteristic uniform micronodular (1-5 mm) changes on lung imaging and life-threatening systemic illness.Footnote 95

The clinical presentation of disseminated TB is often nonspecific. Fever, night sweats, anorexia, weight loss and weakness are commonly reported, while respiratory or other organ-specific symptoms occur less frequently.Footnote 94Footnote 96Footnote 249Footnote 250 Clinical presentation is often subacute or chronic, although acute fulminant deterioration (including shock and acute respiratory distress syndrome) has been described.Footnote 251Footnote 252 In elderly patients, disseminated TB may mimic metastatic carcinoma, being characterized by progressive wasting alone. The absence of fever and chest radiograph changes in this setting can confound TB diagnostic work-up.Footnote 253Footnote 254 Funduscopic exam demonstrating choroidal tubercles is a specific finding and occurs in up to 20% of cases among people with HIV.Footnote 255Footnote 256 The non-specific and often variable presentation of disseminated TB frequently leads to a delay or lack of diagnosis and a high mortality rate.Footnote 96Footnote 257

Good practice statement:

Laboratory findings in disseminated TB are nonspecific, though hematologic abnormalities are common, and hypoalbuminemia, hypercalcemia and elevated ferritin portend a worse prognosis.Footnote 95Footnote 96 Between 30 and 50% of cases do not have the classic discrete micronodular or "miliary" pattern on chest radiograph.Footnote 95 High-resolution CT is more sensitive than chest radiograph, though not necessarily specific for miliary TB.Footnote 258 Prompt examination of AFB smear, NAAT and culture of sputum and urine, along with clinical specimens from multiple sites where disease may be clinically or radiographically apparent (pleural, pericardial, peritoneal, CSF, liver, bone marrow, blood) increases the probability of a positive result and may obviate the need for more invasive tissue biopsy testing (Table 1).Footnote 93Footnote 94Footnote 96Footnote 248 Positron emission tomography-computed tomography (PET-CT) scan may aid in the work-up of disseminated TB by accurately mapping involved lymph nodes to improve diagnostic yield of minimally invasive sampling.Footnote 259 However, limited accessibility may make routine use of PET-CT impractical and delayed access should not delay other investigations or treatment. CNS involvement in disseminated TB may occur in 10-30% of cases, with increased prevalence among people with HIV. Thorough clinical assessment and a low threshold for neuroimaging and lumbar puncture, among those with objective neurologic findings, is advised when disseminated TB is suspected or confirmed.

3.6.1. Disseminated TB treatment

There are no clinical trials specifically evaluating optimal therapy for disseminated TB and observational studies are confounded by variable definitions. Existing guideline recommendations are largely expert opinion based on extrapolation from evidence on treatment of other forms of organ-specific EPTB.Footnote 95Footnote 96Footnote 213Footnote 214

Recommendation:

3.7. Genitourinary TB

3.7.1. Urinary tract

Urinary tract disease is more commonly seen in men and those with end-stage renal disease requiring dialysis.Footnote 56Footnote 260 Most often, onset of the disease is insidious, and patients present with asymptomatic sterile pyuria, gross hematuria, frequency and dysuria.Footnote 261Footnote 262Footnote 263Footnote 264 Back pain or flank pain resembling acute pyelonephritis often reflects calyceal or ureteral obstruction, though renal colic is uncommon. Bladder involvement (with resultant diminished bladder capacity) may present with complaints of an inability to empty the bladder and may be associated with the development of a secondary bacterial bladder infection.

Ultrasonography, CT and MRI are useful diagnostic modalities for the assessment of genitourinary TB.Footnote 265Footnote 266 Radiologic abnormalities associated with urinary tract TB are distorted or eroded calyces, hydronephrosis, renal parenchymal scarring and calcification (all of which can mimic the changes seen in chronic pyelonephritis).Footnote 265Footnote 267

In patients with urinary tract disease, urine samples sent for AFB smear, NAAT and culture will confirm the diagnosis in more than 90% of cases. (Table 1 and Chapter 3: Diagnosis of Tuberculosis Disease and Drug-resistant Tuberculosis for details). Footnote 23Footnote 54Footnote 55Footnote 56Footnote 57Footnote 268 Antibiotic therapy with fluoroquinolones, used to treat superimposed bacterial infection, may compromise the laboratory's ability to recover M. tuberculosis in urine samples and therefore should be stopped more than 48 hours before urine specimens are collected for mycobacteriologic assessment.Footnote 268 Occasionally, fine needle aspiration (FNA) of the kidney under ultrasound guidance may be indicated if radiologic assessment is suggestive of renal TB and urine mycobacterial cultures are negative.Footnote 57Footnote 58

3.7.2. Genital tract

Genital tract TB may follow from a renal focus; the diagnosis of genital TB, therefore, should lead to a search for urinary tract disease. However, disease involving the female genital tract or the seminal vesicles in males is most often due to hematogenous or direct spread from neighboring organs; as such a lack of confirmation of urinary TB should not preclude further investigation in genital tract TB.

3.7.2.1. Female genital tract TB

Any site in the female genital tract may be involved; however, for reasons that are unknown, 90-100% of patients with female genital tract TB have fallopian tube infection, and both tubes are usually involved, with resultant high rates of infertility.Footnote 269Footnote 270Footnote 271 Female genital tract TB is most commonly diagnosed during a work-up for infertility or during evaluation of abnormal uterine bleeding, pelvic pain or adnexal masses. Other, less common sites of involvement in the female genital tract include cervical or vulvovaginal, which frequently presents as abnormal vaginal bleeding or ulcers.Footnote 272 The diagnosis of female genital tract TB requires a combination of microbiologic, histologic and radiologic techniques.Footnote 59Footnote 60Footnote 270Footnote 271Footnote 273 Findings on hysterosalpingography may suggest TB, although, as with renal TB, imaging is often nonspecific and characteristic findings are typically seen only with more advanced disease.Footnote 274 Cultures of M. tuberculosis can be obtained from several sources, including menstrual fluid, peritoneal fluid, endometrial biopsy or biopsy of abnormal tissue identified during laparoscopy.Footnote 59Footnote 60Footnote 62Footnote 273Footnote 275 Small studies have examined the role of NAAT testing in diagnosis of female genital tract TB, with high sensitivity in tissue samples.Footnote 61 Even with adequate treatment for female genital tract TB, subsequent fertility rates range between 10% and 30%.Footnote 60Footnote 276Footnote 277 The importance of confirming a diagnosis of TB-related infertility has been highlighted by cases of congenital TB in those in whom the diagnosis has not been identified prior to in-vitro fertilization.Footnote 278

3.7.2.2. Male genital tract TB

As with the female genital tract, any site of the male genital tract can be involved. Epididymitis/orchitis is the most common presentation.Footnote 269 Penile and prostatic involvement are rare.Footnote 269Footnote 279Footnote 280 Male genital tract TB usually presents with scrotal swelling, sometimes with rectal or pelvic pain and less commonly with hydrocele or, in advanced cases, a discharging sinus ("watering can" perineum).Footnote 269Footnote 279 On examination, the epididymis can be rubbery or nodular, and the prostate can be thickened with hard nodules. Between 50% and 75% of patients have palpable thickening of the vas deferens. Urine and discharge from draining sinuses should be sent for AFB smear, NAAT and culture.Footnote 63Footnote 64Footnote 65Footnote 66 If this is nondiagnostic, biopsies (FNA or excisional) should be performed for diagnosis. Footnote 63Footnote 64Footnote 65Footnote 66

3.7.3. Bacillus Calmette-Guérin (BCG) disease

Individuals who have received intravesical administration of BCG for treatment of bladder cancer are at risk of developing localized genitourinary TB (1% of patients) or spinal or disseminated disease (0.4% of patients).Footnote 281Footnote 282Footnote 283Footnote 284Footnote 285Footnote 286Footnote 287 Men are more likely to develop BCG disease, with a median time to diagnosis of 170 days post-installation.Footnote 284 Diagnosis can be made with urine mycobacterial sampling for genitourinary disease, and with biopsy sampling of affected organ(s) for disseminated disease.

3.7.4. Genitourinary TB treatment

Standard 6-month anti-TB treatment for drug-susceptible genitourinary TB has demonstrated adequate mycobacterial cure rates in observational studies in male genital TB and urinary TB, and is the suggested regime.Footnote 21Footnote 288Footnote 289Footnote 290 There has been one randomized controlled trial in female genital TB comparing 6 months and 9 months of treatment that demonstrated similar treatment outcomes; therefore 6 months is the suggested treatment duration.Footnote 291 Given the drug-susceptibility profile of BCG mycobacterium (with sensitivity to INH and RMP and resistance to pyrazinamide), individuals with disease caused by BCG are usually treated with 9 months of INH and RMP.Footnote 281Footnote 282Footnote 285Footnote 286Footnote 287

Recommendations:

3.8. TB pericarditis

Common presenting symptoms are nonspecific and result from the underlying infectious process (fever, night sweats), cardiac compromise (dyspnea, orthopnea) or disease elsewhere (e.g., cough). Physical signs vary depending upon the degree of cardiac compromise.Footnote 86Footnote 292 Early presentation is associated with a serosanguinous exudative pericardial effusion that may resolve spontaneously over a few weeks or may progress to cardiac tamponade or pericardial constriction.

Imaging modalities for TB pericarditis can include chest radiography, echocardiography, cardiac MRI or CT chest imaging.Footnote 86Footnote 292 TB pericardial effusion is more likely than viral/idiopathic pericardial effusion if there is mediastinal lymphadenopathy on CT imaging; however, this does not assist with differentiation from malignant pericardial effusions.Footnote 293Footnote 294

TB pericardial fluid is typically a bloody exudative effusion and often lymphocyte-predominant.Footnote 84 However, similar findings can be found in chronic idiopathic and malignant pericardial effusions.Footnote 295

Diagnosis of TB pericarditis can be confirmed with sampling of pericardial fluid (60% sensitivity) and/or pericardial tissue (90% sensitivity) for AFB smear, NAAT, culture and histopathologic analysis (Table 1). Given the difficulties in diagnosis and the high morbidity and mortality associated with this condition (80-90% mortality in the pre-antibiotic era), empiric treatment may need to be considered while awaiting the results of microbiologic/ histologic testing (especially in the immunocompromised, as typical histopathology findings may not be present).Footnote 296Footnote 297Footnote 298

3.8.1. TB pericarditis treatment

Treatment regimen/duration recommendations are based on observational data that has demonstrated a reduction in incidence of constrictive pericarditis and mortality compared to the pre-antibiotic era.Footnote 82Footnote 84Footnote 296Footnote 299Footnote 300Footnote 301

In a Cochrane review that analyzed HIV-negative and people with HIV separately, corticosteroids significantly reduced the risk of death from pericarditis. In people with HIV, steroids did not significantly improve any clinical outcome. Of note, only 20% of the participants with HIV were taking antiretroviral medications. There was not a significant increase in opportunistic infections or malignancy among either People with HIV or HIV-negative participants, although the data are limited. There are minimal data for people with HIV on established antiretroviral treatment. In patients with good antiretroviral drug viral suppression, the data from HIV negative patients may be considered more applicable.Footnote 296 An initial dose of prednisolone 120 mg PO daily with a taper over six weeks was prescribed in the largest and most recent study included in the 2017 Cochrane meta-analysis (Table 2).Footnote 296Footnote 301

Recommendations:

Good practice statements:

3.9. Ocular TB

Ocular involvement is a rare manifestation of EPTB. Although commonly encountered in the context of disseminated disease, ocular TB more typically occurs without clinically apparent systemic disease.Footnote 255Footnote 302 In low TB-incidence settings such as Canada, ophthalmologist evaluation of uveitis of unknown etiology with positive immune markers for TB infection (identified through a tuberculin skin test (TST) or interferon-gamma release assay (IGRA)) often leads to a TB center referral for consideration of empiric anti-TB therapy.Footnote 303Footnote 304

TB can affect all parts of the eye and may result from hematogenous spread or adjacent structure extension. Ocular TB can be subcategorized by involvement of the peri-ocular, superficial and intra-ocular structures of the eye, which may occur in isolation or overlap. Intra-ocular TB (IOTB) is the most common form of ocular TB and predominantly manifests as uveitis, primarily involving the vascular posterior portion of the eye (choroid). IOTB may occur in one or both eyes, with variable symptoms ranging from blurred vision to ophthalmalgia, conjunctivitis and vision loss.Footnote 302 The pathophysiology of IOTB remains incompletely characterized but is posited to involve direct infection of the eye or immune-mediated hypersensitivity reaction triggered by TB infection elsewhere in the body.Footnote 305

The clinical overlap between IOTB and other, more common infectious and noninfectious causes of uveitis pose a significant diagnostic challenge. Whereas ophthalmic exam findings of choroidal granulomas, occlusive retinal vasculitis and multifocal serpiginoid choroiditis have been proposed as specific to IOTB in high TB-incidence settings, the transferability of these findings to low-incidence setting has been questioned.Footnote 302Footnote 306 Confirmation of IOTB (culture, molecular or pathologic) is rarely achieved, given the risks associated with ocular sampling and generally low diagnostic yield of such samples when obtained.Footnote 307Footnote 308 Therefore, a presumptive diagnosis of IOTB is often made based upon ophthalmic exam findings, epidemiologic risk factors for TB exposure and positive immune markers of TB infection (TST and/or IGRA) in the absence of alternate cause.Footnote 309Footnote 310 This approach will over-estimate those with IOTB compared with those diagnosed based on polymerase chain reaction (PCR) ocular sampling (46.9% vs 37.7%) or TB culture confirmation at another site (3.8%).Footnote 310Footnote 311Footnote 312Footnote 313

3.9.1. Ocular TB treatment

Consensus guidance has recently been published summarizing clinical evaluation and treatment of ocular TB.Footnote 311 Given the treatable nature of ocular TB and risk of vision loss with treatment delay, initiation of anti-TB therapy should not be delayed once adequate work-up is complete.Footnote 304Footnote 312 Given that IOTB diagnosis is typically indirect and highly dependent on eye exam findings, clear communication with the TB care provider regarding ophthalmic findings and degree of clinical suspicion for IOTB is essential to ensuring timely and appropriate management.

While 9 or more months of therapy has been proposed to reduce relapse, particularly with evidence of persistent inflammatory changes, intra-ocular inflammatory response to effective therapy may be delayed and ongoing infection indistinguishable from hypersensitivity-associated inflammation.Footnote 303Footnote 304Footnote 310Footnote 312Footnote 313Footnote 314Footnote 315Footnote 316Footnote 317

The role of ocular or systemic anti-inflammatories remains controversial and, when used, should be under the guidance and follow-up of an ophthalmologist.Footnote 304Footnote 318 TB preventative therapy should only be used when alternate etiology of ocular disease has been confirmed and is otherwise indicated.Footnote 311 EMB can be safely used as part of standard anti-TB therapy for intra-ocular TB, assuming close follow-up to monitor for signs of optic neuropathy, particularly in those with risk factors.Footnote 311Footnote 319

Recommendation:

3.10. Dermatologic and other rare manifestations of extra-pulmonary TB

TB involving skin is estimated to occur in 1%-2% of EPTB cases. This may be from direct infection (cutaneous TB) or immune-mediated reactions to TB infection elsewhere in the body (tuberculids).Footnote 320 Cutaneous TB typically results from endogenous spread (direct contiguous or lympho-hematogenous) and rarely from exogenous inoculation (TB chancre or verrucosa cutis).Footnote 321 More common forms of cutaneous TB include scrofuladerma (ulcerative erosions), lupus vulgaris (patches or plaques) and orificialis disease (anal and perianal localizing). Tuberculids are often papulonodular in character, ranging from superficial and minimally symptomatic (lichen scrofulosorum) to deeper, painful and, at times, ulcerating panniculitis (erythema induratum of Bazin and papulonecrotic disease).Footnote 320Footnote 321Footnote 322

Diagnosis of cutaneous TB is made by biopsy, with histopathologic assessment and mycobacterial smear and culture. Non-TB mycobacteria and leprosy may also manifest as skin disease, underscoring the diagnostic importance of appropriate tissue-sample testing.

Tuberculid diagnosis can be challenging, often entailing a combination of consistent biopsy histopathology, exclusion of alternate diagnoses, demonstration of TB infection/disease (culture confirmed at another site or supported by chest x-ray, TST and/or IGRA) and response to TB treatment.

Recommendation:

In addition to more common extra-pulmonary sites previously described, TB may also involve non-nodal glandular tissue (e.g., breast), great vessels, endocardium and bone marrow.Footnote 321Footnote 323Footnote 324Footnote 325Footnote 326 Although rare, life-threatening immune-mediated responses to M. tuberculosis may also occur more frequently with EPTB. These include, but are not limited to, hemophagocytic lymphohistiocytosis, acute respiratory distress syndrome and severe hypersensitivity reaction to BCG therapy.Footnote 251Footnote 281Footnote 327Footnote 328

Disclosure statement

The Canadian Thoracic Society (CTS) TB Standards editors and authors declared potential conflicts of interest at the time of appointment and these were updated throughout the process in accordance with the CTS Conflict of Interest Disclosure Policy. Individual member conflict of interest statements are posted on the CTS website.

Funding

The 8th edition Canadian Tuberculosis Standards are jointly funded by the CTS and the Public Health Agency of Canada, edited by the CTS and published by the CTS in collaboration with the Association of Medical Microbiology and Infectious Disease (AMMI) Canada. However, it is important to note that the clinical recommendations in the Standards are those of the CTS. The CTS TB Standards editors and authors are accountable to the CTS Respiratory Guidelines Committee (CRGC) and the CTS Board of Directors. The CTS TB Standards editors and authors are functionally and editorially independent from any funding sources and did not receive any direct funding from external sources. The CTS receives unrestricted grants which are combined into a central operating account to facilitate the knowledge translation activities of the CTS Assemblies and its guideline and standards panels. No corporate funders played any role in the collection, review, analysis or interpretation of the scientific literature or in any decisions regarding the recommendations presented in this document.

References

Footnote 1

World Health Organization. Definitions and Reporting Framework for Tuberculosis–2013 Revision: updated December 2014 and January 2020. 2013. https://apps.who.int/iris/handle/10665/79199. Accessed March 2, 2022.

Return to footnote 1 referrer

Footnote 2

Public Health Agency of Canada. personal communication. 2020.

Return to footnote 2 referrer

Footnote 3

Vachon J, Gallant V, Siu W. Tuberculosis in Canada, 2016. Can Commun Dis Rep. 2018;44(3-4):75–81. doi:10.14745/ccdr.v44i34a01.

Return to footnote 3 referrer

Footnote 4

Aguado JM, Herrero JA, Gavaldá J, et al. Clinical presentation and outcome of tuberculosis in kidney, liver, and heart transplant recipients in Spain. Spanish Transplantation Infection Study Group, GESITRA. Transplantation. 1997;63(9):1278–1286. doi:10.1097/00007890-199705150-00015.

Return to footnote 4 referrer

Footnote 5

Russo RL, Dulley FL, Suganuma L, França IL, Yasuda MA, Costa SF. Tuberculosis in hematopoietic stem cell transplant patients: case report and review of the literature. Int J Infect Dis. 2010;14 Suppl 3:e187–e191. doi:10.1016/j.ijid.2009.08.001.

Return to footnote 5 referrer

Footnote 6

Dobler CC, Cheung K, Nguyen J, Martin A. Risk of tuberculosis in patients with solid cancers and haematological malignancies: a systematic review and meta-analysis. Eur Respir J. 2017;50(2):1700157. doi:10.1183/13993003.00157-2017.

Return to footnote 6 referrer

Footnote 7

Kingkaew N, Sangtong B, Amnuaiphon W, et al. HIV-associated extrapulmonary tuberculosis in Thailand: epidemiology and risk factors for death. Int J Infect Dis. 2009;13(6):722–729. doi:10.1016/j.ijid.2008.11.013.

Return to footnote 7 referrer

Footnote 8

Jones BE, Young SM, Antoniskis D, Davidson PT, Kramer F, Barnes PF. Relationship of the manifestations of tuberculosis to CD4 cell counts in patients with human immunodeficiency virus infection. Am Rev Respir Dis. 1993;148(5):1292–1297. doi:10.1164/ajrccm/148.5.1292.

Return to footnote 8 referrer

Footnote 9

Leeds IL, Magee MJ, Kurbatova EV, et al. Site of Extrapulmonary Tuberculosis is Associated with HIV Infection. Clinical Infectious Diseases. 2012;55(1):75–81. doi:10.1093/cid/cis303.

Return to footnote 9 referrer

Footnote 10

Lau SK, Wei WI, Hsu C, Engzell UC. Efficacy of fine needle aspiration cytology in the diagnosis of tuberculous cervical lymphadenopathy. J Laryngol Otol. 1990;104(1):24–27. doi:10.1017/s0022215100111697.

Return to footnote 10 referrer

Footnote 11

Asimacopoulos EP, Berry M, Garfield B, et al. The diagnostic efficacy of fine-needle aspiration using cytology and culture in tuberculosis lymphadenitis. Int J Tuberc Lung Dis. 2010;14(1):93–98.

Return to footnote 11 referrer

Footnote 12

Polesky A, Grove W, Bhatia G. Peripheral tuberculous lymphadenitis: epidemiology, diagnosis, treatment, and outcome. Medicine (Baltimore). 2005;84(6):350–362. doi:10.1097/01.md.0000189090.52626.7a.

Return to footnote 12 referrer

Footnote 13

Menzies D, Wong T, eds. Canadian Tuberculosis Standards. 7th ed.. Chapter 7: Nonrespiratory Tuberculosis. Canadian Thoracic Society, Canadian Lung Association, Public Health Agency of Canada. Can Respir J. 2013;20(Suppl A):54A–64A.

Return to footnote 13 referrer

Footnote 14

Kohli M, Schiller I, Dendukuri N, et al. Xpert MTB/RIF Ultra and Xpert MTB/RIF assays for extrapulmonary tuberculosis and rifampicin resistance in adults. Cochrane Database Syst Rev. 2021;1:CD012768. doi:10.1002/14651858.CD012768.pub3.

Return to footnote 14 referrer

Footnote 15

Conde MB, Loivos AC, Rezende VM, et al. Yield of sputum induction in the diagnosis of pleural tuberculosis. Am J Respir Crit Care Med. 1 2003;167(5):723–5. doi:10.1164/rccm.2111019.

Return to footnote 15 referrer

Footnote 16

Ruan SY, Chuang YC, Wang JY, et al. Revisiting tuberculosis pleurisy: pleural fluid characteristics and diagnostic yield of mycobacterial culture in an endemic area. Thorax. Sep 2012;67(9):822–827. doi:10.1136/thoraxjnl-2011-201363.

Return to footnote 16 referrer

Footnote 17

Seibert AF, Haynes J, Jr., Middleton R, Bass JB.Jr. Tuberculous pleural effusion. Twenty-year experience. Chest. Apr. 1991;99(4):883–886. doi:10.1378/chest.99.4.883.

Return to footnote 17 referrer

Footnote 18

Akhter N, Sumalani KK, Chawla D, Rizvi A. N. Comparison between the diagnostic accuracy of Xpert MTB/Rif assay and culture for pleural tuberculosis using tissue biopsy. ERJ Open Res. 2019;5(3):00065-2019. doi:10.1183/23120541.00065-2019.

Return to footnote 18 referrer

Footnote 19

Diacon AH, Van de Wal BW, Wyser C, et al. Diagnostic tools in tuberculous pleurisy: a direct comparative study. Eur Respir J. 2003;22(4):589–591. doi:10.1183/09031936.03.00017103a.

Return to footnote 19 referrer

Footnote 20

Casalini AG, Mori PA, Majori M, et al. Pleural tuberculosis: medical thoracoscopy greatly increases the diagnostic accuracy. ERJ Open Res. 2018;4(1):00046-2017. doi:10.1183/23120541.00046-2017.

Return to footnote 20 referrer

Footnote 21

Lewinsohn DM, Leonard MK, LoBue PA, et al. Official American Thoracic Society/Infectious Diseases Society of America/Centers for Disease Control and Prevention Clinical Practice Guidelines: Diagnosis of Tuberculosis in Adults and Children. Clin Infect Dis. 2017;64(2):e1–e33. doi:10.1093/cid/ciw694.

Return to footnote 21 referrer

Footnote 22

Chan CH, Arnold M, Chan CY, Mak TW, Hoheisel GB. Clinical and pathological features of tuberculous pleural effusion and its long-term consequences. Respiration. 1991;58(3-4):171–175. doi:10.1159/000195921.

Return to footnote 22 referrer

Footnote 23

Kohli M, Schiller I, Dendukuri N, et al. Xpert((R)) MTB/RIF assay for extrapulmonary tuberculosis and rifampicin resistance. Cochrane Database Syst Rev. 2018;8:CD012768. doi:10.1002/14651858.CD012768.pub2.

Return to footnote 23 referrer

Footnote 24

Jiang J, Yang J, Shi Y, et al. Head-to-head comparison of the diagnostic accuracy of Xpert MTB/RIF and Xpert MTB/RIF Ultra for tuberculosis: a meta-analysis. Infect Dis (Lond). 2020; 52(11):763–775. doi:10.1080/23744235.2020.1788222.

Return to footnote 24 referrer

Footnote 25

Armand S, Vanhuls P, Delcroix G, Courcol R, Lemaitre N. Comparison of the Xpert MTB/RIF test with an IS6110-TaqMan real-time PCR assay for direct detection of Mycobacterium tuberculosis in respiratory and nonrespiratory specimens. J Clin Microbiol. 2011;49(5):1772–1776. doi:10.1128/jcm.02157-10.

Return to footnote 25 referrer

Footnote 26

Lang AM, Feris-Iglesias J, Pena C, et al. Clinical evaluation of the Gen-Probe Amplified Direct Test for detection of Mycobacterium tuberculosis complex organisms in cerebrospinal fluid. J Clin Microbiol. 1998;36(8):2191–2194. doi:10.1128/JCM.36.8.2191-2194.1998.

Return to footnote 26 referrer

Footnote 27

Pai M, Flores LL, Pai N, Hubbard A, Riley LW, Colford JM. Diagnostic accuracy of nucleic acid amplification tests for tuberculous meningitis: a systematic review and meta-analysis. Lancet Infect Dis. 2003;3(10):633–643. doi:10.1016/s1473-3099(03)00772-2.

Return to footnote 27 referrer

Footnote 28

Thwaites G, Fisher M, Hemingway C, et al. British Infection Society guidelines for the diagnosis and treatment of tuberculosis of the central nervous system in adults and children. J Infect. 2009;59(3):167–187. doi:10.1016/j.jinf.2009.06.011.

Return to footnote 28 referrer

Footnote 29

Bouchama A, Al-Kawi MZ, Kanaan I, et al. Brain biopsy in tuberculoma: the risks and benefits. Neurosurgery. 1991;28(3):405–409.

Return to footnote 29 referrer

Footnote 30

Rajshekhar V, Chandy MJ. CT-guided stereotactic surgery in the management of intracranial tuberculomas. Br J Neurosurg. 1993;7(6):665–671. doi:10.3109/02688699308995096.

Return to footnote 30 referrer

Footnote 31

Mohanty A, Santosh V, Anandh B, et al. Diagnostic efficacy of stereotactic biopsies in intracranial tuberculomas. Surg Neurol. 1999;52(3):252–257. discussion 257-8. doi:10.1016/s0090-3019(99)00089-0.

Return to footnote 31 referrer

Footnote 32

Bahr NC, Nuwagira E, Evans EE, ASTRO-CM Trial Team, et al. Diagnostic accuracy of Xpert MTB/RIF Ultra for tuberculous meningitis in HIV-infected adults: a prospective cohort study. Lancet Infect Dis. 2018;18(1):68–75. doi:10.1016/s1473-3099(17)30474-7.

Return to footnote 32 referrer

Footnote 33

Erdem H, Ozturk-Engin D, Elaldi N, et al. The microbiological diagnosis of tuberculosis meningitis: results of Haydarpasa-1 study. Clin Microbiol Infect. 2014;20(10):O600–8. doi:10.1111/1469-0691.12478.

Return to footnote 33 referrer

Footnote 34

Heemskerk AD, Donovan J, Thu DDA, et al. Improving the microbiological diagnosis of tuberculous meningitis: A prospective, international, multicentre comparison of conventional and modified Ziehl-Neelsen stain, GeneXpert, and culture of cerebrospinal fluid. J Infect. 2018;77(6):509–515. doi:10.1016/j.jinf.2018.09.003.

Return to footnote 34 referrer

Footnote 35

Maiti S, Banerjee M, Das R. Down to the ground zero: Perspective from tissue diagnosis in neurological TB. International Journal of Clinical and Biomedical Research. 2020;6(2):25–29. doi:10.31878/ijcbr.2020.62.07.

Return to footnote 35 referrer

Footnote 36

Giouleme O, Paschos P, Katsaros M, et al. Intestinal tuberculosis: a diagnostic challenge-case report and review of the literature. Eur J Gastroenterol Hepatol. 2011;23(11):1074–1077. doi:10.1097/MEG.0b013e32834a9470.

Return to footnote 36 referrer

Footnote 37

Singh MM, Bhargava AN, Jain KP. Tuberculous peritonitis. An evaluation of pathogenetic mechanisms, diagnostic procedures and therapeutic measures. N Engl J Med. 1969;281(20):1091–1094. doi:10.1056/nejm196911132812003.

Return to footnote 37 referrer

Footnote 38

Sanai FM, Bzeizi KI. Systematic review: tuberculosis peritonitis–presenting features, diagnostic strategies and treatment. Aliment Pharmacol Ther. 2005;22(8):685–700. doi:10.1111/j.1365-2036.2005.02645.x.

Return to footnote 38 referrer

Footnote 39

Chau TN, Leung VK, Wong S, et al. Diagnostic challenges of tuberculosis peritonitis in patients with and without end-stage renal failure. Clin Infect Dis. 2007;45(12):e141–e146. doi:10.1086/523727.

Return to footnote 39 referrer

Footnote 40

Yeh HF, Chiu TF, Chen JC, Ng CJ. Tuberculous peritonitis: analysis of 211 cases in Taiwan. Dig Liver Dis. 2012;44(2):111–117. doi:10.1016/j.dld.2011.08.020.

Return to footnote 40 referrer

Footnote 41

Que Y, Wang X, Liu Y, Li P, Ou G, Zhao W. Ultrasound-guided biopsy of greater omentum: an effective method to trace the origin of unclear ascites. Eur J Radiol. May 2009;70(2):331–335. doi:10.1016/j.ejrad.2008.01.036.

Return to footnote 41 referrer

Footnote 42

Vardareli E, Kebapci M, Saricam T, Pasaoglu O, Acikalin M. Tuberculous peritonitis of the wet ascitic type: clinical features and diagnostic value of image-guided peritoneal biopsy. Dig Liver Dis. 2004;36(3):199–204. doi:10.1016/j.dld.2003.10.016.

Return to footnote 42 referrer

Footnote 43

Chow KM, Chow VC, Szeto CC. Indication for peritoneal biopsy in tuberculous peritonitis. Am J Surg. 2003;185(6):567–573. doi:10.1016/s0002-9610(03)00079-5

Return to footnote 43 referrer

Footnote 44

Kumar S, Bopanna S, Kedia S, et al. Evaluation of Xpert MTB/RIF assay performance in the diagnosis of abdominal tuberculosis. Intest Res. 2017;15(2):187–194. doi:10.5217/ir.2017.15.2.187.

Return to footnote 44 referrer

Footnote 45

Talib A, Bhatty S, Mehmood K, et al. GeneXpert in stool: Diagnostic yield in Intestinal Tuberculosis. J Clin Tuberc Other Mycobact Dis. 2019;17:100131 doi:10.1016/j.jctube.2019.100131.

Return to footnote 45 referrer

Footnote 46

Liu R, Li J, Tan Y, et al. Multicenter evaluation of the acid-fast bacillus smear, mycobacterial culture, Xpert MTB/RIF assay, and adenosine deaminase for the diagnosis of tuberculosis peritonitis in China. Int J Infect Dis. 2020;90:119–124. doi:10.1016/j. ijid.2019.10.036.

Return to footnote 46 referrer

Footnote 47

Bellam BL, Mandavdhare HS, Sharma K, et al. Utility of tissue Xpert-Mtb/Rif for the diagnosis of intestinal tuberculosis in patients with ileocolonic ulcers. Ther Adv Infect Dis. 2019;6:2049936119863939 doi:10.1177/2049936119863939.

Return to footnote 47 referrer

Footnote 48

Bera C, Michael JS, Burad D, et al. Tissue Xpert MTB/Rif assay is of limited use in diagnosing peritoneal tuberculosis in patients with exudative ascites. Indian J Gastroenterol. 2015;34(5):395–398. doi:10.1007/s12664-015-0599-7.

Return to footnote 48 referrer

Footnote 49

Horvath KD, Whelan RL. Intestinal tuberculosis: return of an old disease. Am J Gastroenterol. 1998;93(5):692–696. doi:10.1111/ j.1572-0241.1998.207_a.x.

Return to footnote 49 referrer

Footnote 50

Penz E, Boffa J, Roberts DJ, et al. Diagnostic accuracy of the Xpert(R) MTB/RIF assay for extra-pulmonary tuberculosis: a meta-analysis. Int j Tuberc Lung Dis. 2015;19(3):278–284. i-iii. doi:10.5588/ijtld.14.0262.

Return to footnote 50 referrer

Footnote 51

Denkinger CM, Schumacher SG, Boehme CC, Dendukuri N, Pai M, Steingart KR. Xpert MTB/RIF assay for the diagnosis of extrapulmonary tuberculosis: a systematic review and meta-analysis. Eur Respir J. 2014;44(2):435–446. doi:10.1183/09031936.00007814.

Return to footnote 51 referrer

Footnote 52

Iseman M. A Clinician's Guide to Tuberculosis. Philadelphia, PA: Lippincott Williams & Wilkins; 2000.

Return to footnote 52 referrer

Footnote 53

Zeka AN, Tasbakan S, Cavusoglu C. Evaluation of the GeneXpert MTB/RIF assay for rapid diagnosis of tuberculosis and detection of rifampin resistance in pulmonary and extrapulmonary specimens. J Clin Microbiol. 2011;49(12):4138–4141. doi:10.1128/jcm.05434-11.

Return to footnote 53 referrer

Footnote 54

Bentz RR, Dimcheff DG, Nemiroff MJ, Tsang A, Weg JG. The incidence of urine cultures positive for Mycobacterium tuberculosis in a general tuberculosis patient population. Am Rev Respir Dis. 1975;111(5):647–650. doi:10.1164/arrd.1975.111.5.647.

Return to footnote 54 referrer

Footnote 55

Lattimer JK, Reilly RJ, Segawa A. The significance of the isolated positive urine culture in genitourinary tuberculosis. J Urol. 1969;102(5):610–613. doi:10.1016/s0022-5347(17)62211-0.

Return to footnote 55 referrer

Footnote 56

Hsu HL, Lai CC, Yu MC, et al. Clinical and microbiological characteristics of urine culture-confirmed genitourinary tuberculosis at medical centers in Taiwan from 1995 to 2007. Eur J Clin Microbiol Infect Dis. 2011;30(3):319–326. doi:10.1007/s10096-010-1083-z.

Return to footnote 56 referrer

Footnote 57

Baniel J, Manning A, Leiman G. Fine needle cytodiagnosis of renal tuberculosis. J Urol. 1991;146(3):689–691. doi:10.1016/S0022-5347(17)37894-1.

Return to footnote 57 referrer

Footnote 58

Das KM, Vaidyanathan S, Rajwanshi A, Indudhara R. Renal tuberculosis: diagnosis with sonographically guided aspiration cytology. AJR Am J Roentgenol. 1992;158(3):571–573. doi:10.2214/ajr.158.3.1738997.

Return to footnote 58 referrer

Footnote 59

Turkmen IC, Bassullu N, Comunoglu C, et al. Female genital system tuberculosis: a retrospective clinicopathological study of 1,548 cases in Turkish women. Arch Gynecol Obstet. 2012;286(2):379–384. doi:10.1007/s00404-012-2281-y.

Return to footnote 59 referrer

Footnote 60

Margolis K, Wranz PA, Kruger TF, Joubert JJ, Odendaal HJ. Genital tuberculosis at Tygerberg Hospital–prevalence, clinical presentation and diagnosis. S Afr Med J. 1992;81(1):12–15.

Return to footnote 60 referrer

Footnote 61

Sharma JB, Kriplani A, Dharmendra S, Chaubey J, Kumar S, Sharma SK. Role of Gene Xpert in diagnosis of female genital tuberculosis: a preliminary report. Eur J Obstet Gynecol Reprod Biol. 2016;207:237–238. doi:10.1016/j.ejogrb.2016.10.045.

Return to footnote 61 referrer

Footnote 62

Thangappah RB, Paramasivan CN, Narayanan S. Evaluating PCR, culture & histopathology in the diagnosis of female genital tuberculosis. Indian J Med Res. 2011;134:40–46.

Return to footnote 62 referrer

Footnote 63

Gómez García I, Gómez Mampaso E, Burgos Revilla J, et al. Tuberculous orchiepididymitis during 1978-2003 period: review of 34 cases and role of 16S rRNA amplification. Urology. 2010;76(4):776–781. doi:10.1016/j.urology.2010.01.033.

Return to footnote 63 referrer

Footnote 64

Lee IK, Yang WC, Liu JW. Scrotal tuberculosis in adult patients: a 10-year clinical experience. Am J Trop Med Hyg. 2007;77(4):714–718.

Return to footnote 64 referrer

Footnote 65

Gorse GJ, Belshe RB. Male genital tuberculosis: a review of the literature with instructive case reports. Rev Infect Dis. 1985;7(4):511–524. Jul-Aug doi:10.1093/clinids/7.4.511.

Return to footnote 65 referrer

Footnote 66

Madeb R, Marshall J, Nativ O, Erturk E. Epididymal tuberculosis: case report and review of the literature. Urology. 2005;65(4):798. doi:10.1016/j.urology.2004.10.029.

Return to footnote 66 referrer

Footnote 67

Altez-Fernandez C, Ortiz V, Mirzazadeh M, Zegarra L, Seas C, Ugarte-Gil C. Diagnostic accuracy of nucleic acid amplification tests (NAATs) in urine for genitourinary tuberculosis: a systematic review and meta-analysis. BMC Infect Dis. 2017;17(1):390. doi:10.1186/s12879-017-2476-8.

Return to footnote 67 referrer

Footnote 68

Chen Y, Wu P, Fu L, Liu YH, Zhang Y, Zhao Y. Multicentre evaluation of Xpert MTB/RIF assay in detecting urinary tract tuberculosis with urine samples. Sci Rep. 2019;9(1):11053. doi:10.1038/s41598-019-47358-3.

Return to footnote 68 referrer

Footnote 69

Perez-Risco D, Rodriguez-Temporal D, Valledor-Sanchez I, Alcaide F. Evaluation of the Xpert MTB/RIF Ultra Assay for Direct Detection of Mycobacterium tuberculosis Complex in Smear-Negative Extrapulmonary Samples. J Clin Microbiol. 2018;56(9). doi:10.1128/JCM.00659-18.

Return to footnote 69 referrer

Footnote 70

Kashyap B, Kaur T, Jhamb R, Kaur I. Evaluating the utility of menstrual blood versus endometrial biopsy as a clinical sample in the diagnosis of female genital tuberculosis. Asian J Med Res. 2012;1:45–49.

Return to footnote 70 referrer

Footnote 71

Lenk S, Schroeder J. Genitourinary tuberculosis. Curr Opin Urol. 2001;11(1):93–98. doi:10.1097/00042307-200101000-00014.

Return to footnote 71 referrer

Footnote 72

Colmenero JD, Ruiz-Mesa JD, Sanjuan-Jimenez R, Sobrino B, Morata P. Establishing the diagnosis of tuberculous vertebral osteomyelitis. Eur Spine J. 2013;22 Suppl 4:579–86. doi:10.1007/s00586. 012-2348-2.

Return to footnote 72 referrer

Footnote 73

Cormican L, Hammal R, Messenger J, Milburn HJ. Current difficulties in the diagnosis and management of spinal tuberculosis. Postgrad Med J. 2006;82(963):46–51. doi:10.1136/pgmj.2005.032862.

Return to footnote 73 referrer

Footnote 74

Garrido G, Gomez-Reino JJ, Fernandez-Dapica P, Palenque E, Prieto S. A review of peripheral tuberculosis arthritis. Semin Arthritis Rheum. 1988;18(2):142–149. doi:10.1016/0049-0172(88)90007-8.

Return to footnote 74 referrer

Footnote 75

Ellis ME, el-Ramahi KM, Al-Dalaan AN. Tuberculosis of peripheral joints: a dilemma in diagnosis. Tuber Lung Dis. 1993;74(6):399–404. doi:10.1016/0962-8479(93)90084-b.

Return to footnote 75 referrer

Footnote 76

Sant M, Bajaj H. Role of histopathology in the diagnosis of tuberculosis synovitis. J Indian Med Assoc. 1992;90(10):263–264.

Return to footnote 76 referrer

Footnote 77

Mondal A. Cytological diagnosis of vertebral tuberculosis with fine-needle aspiration biopsy. J Bone Joint Surg Am. 1994;76(2):181–184. doi:10.2106/00004623-199402000-00003.

Return to footnote 77 referrer

Footnote 78

Sun Q, Wang S, Dong W, et al. Diagnostic value of Xpert MTB/ RIF Ultra for osteoarticular tuberculosis. J Infect. 2019;79(2):153–158. doi:10.1016/j.jinf.2019.06.006.

Return to footnote 78 referrer

Footnote 79

Wallace R, Cohen AS. Tuberculous arthritis: A report of two cases with review of biopsy and synovial fluid findings. Am J Med. 1976;61(2):277–282. doi:10.1016/0002-9343(76)90177-7.

Return to footnote 79 referrer

Footnote 80

Pertuiset E, Beaudreuil J, Liote F, et al. Spinal tuberculosis in adults. A study of 103 cases in a developed country, 1980-1994. Medicine (Baltimore). 1999;78(5):309–320. doi:10.1097/00005792-199909000-00003.

Return to footnote 80 referrer

Footnote 81

Quale JM, Lipschik GY, Heurich AE. Management of tuberculous pericarditis. Ann Thorac Surg. 1987;43(6):653–655. doi:10.1016/s0003-4975(10)60243-3.

Return to footnote 81 referrer

Footnote 82

Strang JI, Kakaza HH, Gibson DG, et al. Controlled clinical trial of complete open surgical drainage and of prednisolone in treatment of tuberculosis pericardial effusion in Transkei. Lancet. 1988;2(8614):759–764. doi:10.1016/S0140-6736(88)92415-4.

Return to footnote 82 referrer

Footnote 83

Komsuoğlu B, Göldelï O, Kulan K, Komsuoğlu SS. The diagnostic and prognostic value of adenosine deaminase in tuberculous pericarditis. Eur Heart J. 1995;16(8):1126–1130. doi:10.1093/oxfordjournals.eurheartj.a061057.

Return to footnote 83 referrer

Footnote 84

Mayosi BM, Burgess LJ, Doubell AF. Tuberculous pericarditis. Circulation. 2005;112(23):3608–3616. doi:10.1161/circulationaha.105.543066.

Return to footnote 84 referrer

Footnote 85

Fowler NO, Manitsas GT. Infectious pericarditis. Prog Cardiovasc Dis. 1973;16(3):323–336. doi:10.1016/S0033-0620(73)80004-0.

Return to footnote 85 referrer

Footnote 86

Trautner BW, Darouiche RO. Tuberculous pericarditis: optimal diagnosis and management. Clin Infect Dis. 2001;33(7):954–961. doi:10.1086/322621.

Return to footnote 86 referrer

Footnote 87

Cegielski JP, Devlin BH, Morris AJ. Comparison of PCR, culture, and histopathology for diagnosis of tuberculosis pericarditis. J Clin Microbiol. 1997;35(12):3254–7. doi:10.1128/JCM.35.12.3254–3257.1997

Return to footnote 87 referrer

Footnote 88

Yu G, Ye B, Chen D, et al. Comparison between the diagnostic validities of Xpert MTB/RIF and interferon-gamma release assays for tuberculosis pericarditis using pericardial tissue. PLoS One. 2017;12(12):e0188704. doi:10.1371/journal.pone.0188704.

Return to footnote 88 referrer

Footnote 89

Prout S, Benatar SR. Disseminated tuberculosis. A study of 62 cases. S Afr Med J. 1980;58(21):835–842.

Return to footnote 89 referrer

Footnote 90

Kim JH, Langston AA, Gallis HA. Miliary tuberculosis: epidemiology, clinical manifestations, diagnosis, and outcome. Rev Infect Dis. 1990;12(4):583–590. doi:10.1093/clinids/12.4.583.

Return to footnote 90 referrer

Footnote 91

Mert A, Bilir M, Tabak F, et al. Miliary tuberculosis: clinical manifestations, diagnosis and outcome in 38 adults. Respirology. 2001;6(3):217–224. doi:10.1046/j.1440-1843.2001.00328.x.

Return to footnote 91 referrer

Footnote 92

Maartens G, Willcox PA, Benatar SR. Miliary tuberculosis: rapid diagnosis, hematologic abnormalities, and outcome in 109 treated adults. Am J Med. 1990;89(3):291–296. doi:10.1016/0002-9343(90)90340-J.

Return to footnote 92 referrer

Footnote 93

Hussain SF, Irfan M, Abbasi M, et al. Clinical characteristics of 110 miliary tuberculosis patients from a low HIV prevalence country. Int J Tuberc Lung Dis. 2004;8(4):493–499.

Return to footnote 93 referrer

Footnote 94

Mert A, Arslan F, Kuyucu T, et al. Miliary tuberculosis: Epidemiological and clinical analysis of large-case series from moderate to low tuberculosis endemic Country. Medicine (Baltimore). 2017;96(5):e5875. doi:10.1097/MD.0000000000005875.

Return to footnote 94 referrer

Footnote 95

Sharma SK, Mohan A. Miliary Tuberculosis. Microbiol Spectr. 2017;5(2). doi:10.1128/microbiolspec.TNMI7-0013-2016.

Return to footnote 95 referrer

Footnote 96

Wang JY, Hsueh PR, Wang SK, et al. Disseminated tuberculosis: a 10-year experience in a medical center. Medicine (Baltimore). Jan 2007;86(1):39–46. doi:10.1097/MD.0b013e318030b605.

Return to footnote 96 referrer

Footnote 97

Dankner WM, Davis CE. Mycobacterium bovis as a significant cause of tuberculosis in children residing along the United States-Mexico border in the Baja California region. Pediatrics. 2000;105(6):E79–e79. doi:10.1542/peds.105.6.e79.

Return to footnote 97 referrer

Footnote 98

Fontanilla JM, Barnes A, von Reyn CF. Current diagnosis and management of peripheral tuberculous lymphadenitis. Clin Infect Dis. 2011;53(6):555–562. doi:10.1093/cid/cir454.

Return to footnote 98 referrer

Footnote 99

Shriner KA, Mathisen GE, Goetz MB. Comparison of mycobacterial lymphadenitis among persons infected with human immunodeficiency virus and seronegative controls. Clin Infect Dis. 1992;15(4):601–605. doi:10.1093/clind/15.4.601.

Return to footnote 99 referrer

Footnote 100

Cook VJ, Manfreda J, Hershfield ES. Tuberculous lymphadenitis in Manitoba: incidence, clinical characteristics and treatment. Can Respir J. 2004;11(4):279–286. doi:10.1155/2004/826501.

Return to footnote 100 referrer

Footnote 101

Lee MP, Chan JW, Ng KK, Li PC. Clinical manifestations of tuberculosis in HIV-infected patients. Respirology. 2000;5(4):423–426. doi:10.1111/j.1440-1843.2000.00287.x.

Return to footnote 101 referrer

Footnote 102

Long R, Boffa J. High HIV-TB co-infection rates in marginalized populations: evidence from Alberta in support of screening TB patients for HIV. Can J Public Health. 2010;101(3):202–204.

Return to footnote 102 referrer

Footnote 103

Martin T, Hoeppner VH, Ring ED. Superficial mycobacterial lymphadenitis in Saskatchewan. CMAJ. 1988;138(5):431–434.

Return to footnote 103 referrer

Footnote 104

Metchock, BG, Nolte FS, and Wallace RJ. Jr. Manual of clinical microbiology. In: Mycobacterium. 7th ed. Washington, D.C.: American Society for Microbiology; 1999:399–437.

Return to footnote 104 referrer

Footnote 105

Campbell IA, Ormerod LP, Friend JA, Jenkins PA, Prescott RJ. Six months versus nine months chemotherapy for tuberculosis of lymph nodes: final results. Respir Med. 1993;87(8):621–623. doi:10.1016/s0954-6111(05)80265-3.

Return to footnote 105 referrer

Footnote 106

Yuen AP, Wong SH, Tam CM, Chan SL, Wei WI, Lau SK. Prospective randomized study of thrice weekly six-month and nine-month chemotherapy for cervical tuberculous lymphadenopathy. Otolaryngol Head Neck Surg. 1997;116(2):189–192. doi:10.1016/s0194-5998(97)70323-1.

Return to footnote 106 referrer

Footnote 107

van Loenhout-Rooyackers JH, Laheij RJ, Richter C, Verbeek AL. Shortening the duration of treatment for cervical tuberculous lymphadenitis. Eur Respir J. 2000;15(1):192–195. doi:10.1183/09031936.00.15119200.

Return to footnote 107 referrer

Footnote 108

McMaster P, Isaacs D. Critical review of evidence for short course therapy for tuberculous adenitis in children. Pediatr Infect Dis J. 2000;19(5):401–404. doi:10.1097/00006454-200005000-00003.

Return to footnote 108 referrer

Footnote 109

Donald PR. The chemotherapy of tuberculous lymphadenopathy in children. Tuberculosis (Edinb). 2010;90(4):213–224. doi:10.1016/j.tube.2010.05.001.

Return to footnote 109 referrer

Footnote 110

Hawkey CR, Yap T, Pereira J, et al. Characterization and management of paradoxical upgrading reactions in HIV-uninfected patients with lymph node tuberculosis. Clin Infect Dis. 2005;40(9):1368–1371. doi:10.1086/429317.

Return to footnote 110 referrer

Footnote 111

Blaikley JF, Khalid S, Ormerod LP. Management of peripheral lymph node tuberculosis in routine practice: an unselected 10-year cohort. Int J Tuberc Lung Dis. 2011;15(3):375–378.

Return to footnote 111 referrer

Footnote 112

Seok H, Jeon JH, Oh KH, et al. Characteristics of residual lymph nodes after six months of antituberculous therapy in HIV-negative individuals with cervical tuberculous lymphadenitis. BMC Infect Dis. 2019;19(1):867. doi:10.1186/s12879019-4507-0.

Return to footnote 112 referrer

Footnote 113

Shaw JA, Diacon AH, Koegelenberg CFN. Tuberculous pleural effusion. Respirology. Oct 2019;24(10):962–971. doi:10.1111/resp.13673.

Return to footnote 113 referrer

Footnote 114

Antonangelo L, Faria CS, Sales RK. Tuberculous pleural effusion: diagnosis & management. Expert Rev Respir Med. 2019;13(8):747–759. doi:10.1080/17476348.2019.1637737.

Return to footnote 114 referrer

Footnote 115

Wen P, Wei M, Han C, He Y, Wang MS. Risk factors for tuberculous empyema in pleural tuberculosis patients. Sci Rep. 2019;9(1):19569. doi:10.1038/s41598-019-56140-4.

Return to footnote 115 referrer

Footnote 116

Valdes L, Alvarez D, San JE, et al. Tuberculous pleurisy: a study of 254 patients. Arch Intern Med. 1998;158(18):2017–2021. doi:10.1001/archinte.158.18.2017.

Return to footnote 116 referrer

Footnote 117

Kim HJ, Lee HJ, Kwon SY, et al. The prevalence of pulmonary parenchymal tuberculosis in patients with tuberculous pleuritis. Chest. 2006;129(5):1253–1258. doi:10.1378/chest.129.5.1253.

Return to footnote 117 referrer

Footnote 118

Ko JM, Park HJ, Kim CH. Pulmonary changes of pleural TB: up-to-date CT imaging. Chest. 2014;146(6):1604–1611. doi:10.1378/chest.14-0196.

Return to footnote 118 referrer

Footnote 119

Di Gennaro F, Pisani L, Veronese N, et al. Potential Diagnostic Properties of Chest Ultrasound in Thoracic Tuberculosis-A Systematic Review. IJERPH. Oct 12 2018;15(10):2235. doi:10.3390/ijerph15102235.

Return to footnote 119 referrer

Footnote 120

Keshishyan S, Kaul V, Gupta A, Ahn C, Aronow WS, Epelbaum O. Sputum culture for the diagnosis of tuberculous pleural effusion: analysis of absolute and incremental yields. Adv Respir Med. 2019;87(5):281–288. doi:10.5603/ARM.2019.0050.

Return to footnote 120 referrer

Footnote 121

Gopi A, Madhavan SM, Sharma SK, Sahn SA. Diagnosis and treatment of tuberculous pleural effusion in 2006. Chest. 2007;131(3):880–889. doi:10.1378/chest.06-2063.

Return to footnote 121 referrer

Footnote 122

Cañete C, Galarza I, Granados A, Farrero E, Estopà R, Manresa F. Tuberculous pleural effusion: experience with six months of treatment with isoniazid and rifampicin. Thorax. 1994;49(11):1160–1161. doi:10.1136/thx.49.11.1160.

Return to footnote 122 referrer

Footnote 123

Lai YF, Chao TY, Wang YH, Lin AS. Pigtail drainage in the treatment of tuberculosis pleural effusions: a randomised study. Thorax. 2003;58(2):149–151. doi:10.1136/thorax.58.2.149.

Return to footnote 123 referrer

Footnote 124

Garcia-Rodriguez JF, Valcarce-Pardeiro N, Alvarez-Diaz H, Marino-Callejo A. Long-term efficacy of 6-month therapy with isoniazid and rifampin compared with isoniazid, rifampin, and pyrazinamide treatment for pleural tuberculosis. Eur J Clin Microbiol Infect Dis. 2019;38(11):2121–2126. doi:10.1007/s10096-019-03651-7.

Return to footnote 124 referrer

Footnote 125

Wyser C, Walzl G, Smedema JP, Swart F, van Schalkwyk EM, van de Wal BW. Corticosteroids in the treatment of tuberculous pleurisy. A double-blind, placebo-controlled, randomized study. Chest. 1996;110(2):333–338. doi:10.1378/chest.110.2.333.

Return to footnote 125 referrer

Footnote 126

Ryan H, Yoo J, Darsini P. Corticosteroids for tuberculous pleurisy. Cochrane Database Syst Rev. 2017;3:CD001876. doi:10.1002/14651858.CD001876.pub3.

Return to footnote 126 referrer

Footnote 127

Bhuniya S, Arunabha DC, Choudhury S, Saha I, Roy TS, Saha M. Role of therapeutic thoracentesis in tuberculosis pleural effusion. Ann Thorac Med. 2012;7(4):215–219. doi:10.4103/1817-1737.102176.

Return to footnote 127 referrer

Footnote 128

Light RW. Update on tuberculous pleural effusion. Respirology. 2010;15(3):451–458. doi:10.1111/j.1440-1843.2010.01723.x.

Return to footnote 128 referrer

Footnote 129

Ferrer J. Tuberculous pleural effusion and tuberculous empyema. Semin Respir Crit Care Med. 2001;22(6):637–646. doi:10.1055/s-2001-18800.

Return to footnote 129 referrer

Footnote 130

Long R, Barrie J, Stewart K, Peloquin CA. Treatment of a tuberculous empyema with simultaneous oral and intrapleural antituberculosis drugs. Can Respir J. 2008;15(5):241–243. doi:10.1155/2008/747206.

Return to footnote 130 referrer

Footnote 131

Cho J-K, Choi YM, Lee SS, et al. Clinical features and outcomes of abdominal tuberculosis in southeastern Korea: 12 years of experience. BMC Infect Dis. 2018;18(1):699. doi:10.1186/s12879-018-3635-2.

Return to footnote 131 referrer

Footnote 132

Debi U, Ravisankar V, Prasad KK, Sinha SK, Sharma AK. Abdominal tuberculosis of the gastrointestinal tract: revisited. World J Gastroenterol. 2014;20(40):14831–14840. doi:10.3748/wjg.v20.i40.14831.

Return to footnote 132 referrer

Footnote 133

Mukewar S, Mukewar S, Ravi R, Prasad A, S Dua K. Colon tuberculosis: endoscopic features and prospective endoscopic follow-up after anti-tuberculosis treatment. Clin Transl Gastroenterol. 2012;3:e24. doi:10.1038/ctg.2012.19.

Return to footnote 133 referrer

Footnote 134

Nagi B, Kochhar R, Bhasin DK, Singh K. Colorectal tuberculosis. Eur Radiol. 2003;13(8):1907–1912. doi:10.1007/s00330-002-1409-z.

Return to footnote 134 referrer

Footnote 135

Almadi MA, Ghosh S, Aljebreen AM. Differentiating intestinal tuberculosis from Crohn's disease: a diagnostic challenge. Am J Gastroenterol. 2009;104(4):1003–1012. doi:10.1038/ajg.2008.162.

Return to footnote 135 referrer

Footnote 136

Jakubowski A, Elwood RK, Enarson DA. Clinical features of abdominal tuberculosis. J Infect Dis. Oct 1988;158(4):687–692. doi:10.1093/infdis/158.4.687.

Return to footnote 136 referrer

Footnote 137

Lee W-K, Van Tonder F, Tartaglia CJ, et al. CT appearances of abdominal tuberculosis. Clin Radiol. 2012;67(6):596–604. doi:10.1016/j.crad.2011.11.003.

Return to footnote 137 referrer

Footnote 138

Balthazar EJ, Gordon R, Hulnick D. Ileocecal tuberculosis: CT and radiologic evaluation. AJR Am J Roentgenol. 1990;154(3):499–503. doi:10.2214/ajr.154.3.2106212.

Return to footnote 138 referrer

Footnote 139

Pereira JM, Madureira AJ, Vieira A, Ramos I. Abdominal tuberculosis: imaging features. Eur J Radiol. 2005;55(2):173–180. doi:10.1016/j.ejrad.2005.04.015.

Return to footnote 139 referrer

Footnote 140

Gupta P, Kumar S, Sharma V, et al. Common and uncommon imaging features of abdominal tuberculosis. J Med Imaging Radiat Oncol. 2019;63(3):329–339. doi:10.1111/1754-9485.12874.

Return to footnote 140 referrer

Footnote 141

Pulimood AB, Ramakrishna BS, Kurian G, et al. Endoscopic mucosal biopsies are useful in distinguishing granulomatous colitis due to Crohn's disease from tuberculosis. Gut. 1999;45(4):537–541. doi:10.1136/gut.45.4.537.

Return to footnote 141 referrer

Footnote 142

Ye Z, Lin Y, Cao Q, He Y, Xue L. Granulomas as the Most Useful Histopathological Feature in Distinguishing between Crohn's Disease and Intestinal Tuberculosis in Endoscopic Biopsy Specimens. Medicine (Baltimore). 2015;94(49):e2157. doi:10.1097/MD.0000000000002157.

Return to footnote 142 referrer

Footnote 143

Pratap Mouli V, Munot K, Ananthakrishnan A, et al. Endoscopic and clinical responses to anti-tubercular therapy can differentiate intestinal tuberculosis from Crohn's disease. Aliment Pharmacol Ther. 2017;45(1):27–36. doi:10.1111/apt.13840.

Return to footnote 143 referrer

Footnote 144

Patton PH, Parker CE, MacDonald JK, Chande N. Anti-tuberculous therapy for maintenance of remission in Crohn's disease. Cochrane Database Syst Rev. 2016;7:CD000299. doi:10.1002/14651858.CD000299.pub3.

Return to footnote 144 referrer

Footnote 145

Gupta A, Pratap Mouli V, Mohta S, et al. Anti-tubercular therapy given to differentiate Crohn's disease from intestinal tuberculosis predisposes to stricture formation. J Crohns Colitis. 2020;14(11):1611–1618. doi:10.1093/ecco-jcc/jjaa091.

Return to footnote 145 referrer

Footnote 146

Marrie TJ, Hershfield ES. Tuberculosis peritonitis in Manitoba. Can J Surg. 1978;21(6):533–536.

Return to footnote 146 referrer

Footnote 147

Tirumani SH, Ojili V, Gunabushanam G, et al. Imaging of tuberculosis of the abdominal viscera: beyond the intestines. J Clin Imaging Sci. 2013;3:17. doi:10.4103/2156-7514.111234.

Return to footnote 147 referrer

Footnote 148

Sharma MP, Bhatia V. Abdominal tuberculosis. Indian J Med Res. 2004;120(4):305–315.

Return to footnote 148 referrer

Footnote 149

Abdelaal A, Alfkey R, Abdelaziem S, et al. Role of laparoscopic peritoneal biopsy in the diagnosis of peritoneal tuberculosis. A seven-year experience. Chirurgia (Bucur). 2014;109(3):330–334.

Return to footnote 149 referrer

Footnote 150

Yilmaz A, Ece F, Bayramgurler B, Akkaya E, Baran R. The value of Ca 125 in the evaluation of tuberculosis activity. Respir Med. 2001;95(8):666–669. doi:10.1053/rmed.2001.1121.

Return to footnote 150 referrer

Footnote 151

Jullien S, Jain S, Ryan H, Ahuja V. Six-month therapy for abdominal tuberculosis. Cochrane Database Syst Rev. 2016;11:CD012163. doi:10.1002/14651858.CD012163.pub2.

Return to footnote 151 referrer

Footnote 152

Park SH, Yang SK, Yang DH, et al. Prospective randomized trial of six-month versus nine-month therapy for intestinal tuberculosis. Antimicrob Agents Chemother. 2009;53(10):4167–4171. doi:10.1128/aac.00874-09.

Return to footnote 152 referrer

Footnote 153

Leonard MK, Blumberg HM. Musculoskeletal Tuberculosis. Microbiol Spectr. 2017;5(2). doi:10.1128/microbiolspec.TNMI7-0046-2017.

Return to footnote 153 referrer

Footnote 154

Sharma A, Chhabra HS, Chabra T, Mahajan R, Batra S, Sangondimath G. Demographics of tuberculosis of spine and factors affecting neurological improvement in patients suffering from tuberculosis of spine: a retrospective analysis of 312 cases. Spinal Cord. 2017;55(1):59–63. doi:10.1038/sc.2016.85.

Return to footnote 154 referrer

Footnote 155

Johansen IS, Nielsen SL, Hove M, et al. Characteristics and Clinical Outcome of Bone and Joint Tuberculosis From 1994 to 2011: A Retrospective Register-based Study in Denmark. Clin Infect Dis. 2015;61(4):554–562. doi:10.1093/cid/civ326.

Return to footnote 155 referrer

Footnote 156

Broderick C, Hopkins S, Mack DJF, et al. Delays in the diagnosis and treatment of bone and joint tuberculosis in the United Kingdom. Bone Joint J. 2018;100-B(1):119–124. doi:10.1302/0301-620x.100b1.Bjj-2017-0357.R1.

Return to footnote 156 referrer

Footnote 157

Singh R, Magu NK, Rohilla RK. Clinicoradiologic Profile of Involvement and Healing in Tuberculosis of the Spine. Ann Med Health Sci Res. 2016;6(5):311–327. doi:10.4103/amhsr.amhsr_188_15.

Return to footnote 157 referrer

Footnote 158

Dunn RN, Ben Husien M. Spinal tuberculosis: review of current management. Bone Joint J. 2018;100-B(4):425–431. doi:10.1302/0301-620x.100b4.Bjj-2017-1040.R1.

Return to footnote 158 referrer

Footnote 159

Boachie-Adjei O, Squillante RG. Tuberculosis of the spine. Orthop Clin North Am. 1996;27(1):95–103.

Return to footnote 159 referrer

Footnote 160

Rezai AR, Lee M, Cooper PR, Errico TJ, Koslow M. Modern management of spinal tuberculosis. Neurosurgery. 1995;36(1):87–97. doi:10.1227/00006123-199501000-00011.

Return to footnote 160 referrer

Footnote 161

Bhandari A, Garg RK, Malhotra HS, et al. Outcome assessment in conservatively managed patients with cervical spine tuberculosis. Spinal Cord. 2014;52(6):489–493. doi:10.1038/sc.2014.49.

Return to footnote 161 referrer

Footnote 162

Kim JH, Ahn JY, Jeong SJ, et al. Prognostic factors for unfavourable outcomes of patients with spinal tuberculosis in a country with an intermediate tuberculosis burden: a multicentre cohort study. Bone Joint J. 2019;101-B(12):1542–1549. doi:10.1302/0301-620x.101b12.Bjj-2019-0558.R1.

Return to footnote 162 referrer

Footnote 163

Kilborn T, Janse van Rensburg P, Candy S. Pediatric and adult spinal tuberculosis: imaging and pathophysiology. Neuroimaging Clin N Am. 2015;25(2):209–231. doi:10.1016/j.nic.2015.01.002.

Return to footnote 163 referrer

Footnote 164

Burrill J, Williams CJ, Bain G, Conder G, Hine AL, Misra RR. Tuberculosis: a radiologic review. Radiographics. 2007;27(5):1255–1273. doi:10.1148/rg.275065176.

Return to footnote 164 referrer

Footnote 165

Boxer DI, Pratt C, Hine AL, McNicol M. Radiological features during and following treatment of spinal tuberculosis. Br J Radiol. 1992;65(774):476–479. doi:10.1259/0007-1285-65-774-476.

Return to footnote 165 referrer

Footnote 166

Joseffer SS, Cooper PR. Modern imaging of spinal tuberculosis. J Neurosurg Spine. 2005;2(2):145–150. doi:10.3171/spi.2005.2.2.0145.

Return to footnote 166 referrer

Footnote 167

Jain AK, Sreenivasan R, Mukunth R, Dhammi IK. Tubercular spondylitis in children. Indian J Orthop. 2014;48(2):136–144. doi:10.4103/0019-5413.128747.

Return to footnote 167 referrer

Footnote 168

Shikhare SN, Singh DR, Shimpi TR, Peh WC. Tuberculous osteomyelitis and spondylodiscitis. Semin Musculoskelet Radiol. 2011;15(5):446–458. doi:10.1055/s-0031-1293491.

Return to footnote 168 referrer

Footnote 169

Gu Y, Wang G, Dong W, et al. Xpert MTB/RIF and GenoType MTBDRplus assays for the rapid diagnosis of bone and joint tuberculosis. Int J Infect Dis. 2015;36:27–30. doi:10.1016/j.ijid.2015.05.014.

Return to footnote 169 referrer

Footnote 170

Held M, Laubscher M, Mears S, et al. Diagnostic Accuracy of the Xpert MTB/RIF Assay for Extrapulmonary Tuberculosis in Children With Musculoskeletal Infections. Pediatr Infect Dis J. 2016;35(11):1165–1168. doi:10.1097/INF.0000000000001271.

Return to footnote 170 referrer

Footnote 171

Held M, Laubscher M, Zar HJ, Dunn RN. GeneXpert polymerase chain reaction for spinal tuberculosis: an accurate and rapid diagnostic test. Bone Joint J. 2014;96-B(10):1366–1369. doi:10.1302/0301-620x.96b10.34048.

Return to footnote 171 referrer

Footnote 172

Shen Y, Yu G, Zhong F, Kong X. Diagnostic accuracy of the Xpert MTB/RIF assay for bone and joint tuberculosis: A meta-analysis. PLoS One. 2019;14(8):e0221427. doi:10.1371/journal.pone.0221427.

Return to footnote 172 referrer

Footnote 173

Cao G, Rao J, Cai Y, et al. Analysis of Treatment and Prognosis of 863 Patients with Spinal Tuberculosis in Guizhou Province. Biomed Res Int. 2018;2018:3265735. doi:10.1155/2018/3265735.

Return to footnote 173 referrer

Footnote 174

Wei G, Mu J, Wang G, et al. The reliability analysis of Xpert-positive result for smear-negative and culture-negative specimen collected from bone and joint tuberculosis suspects. J Thorac Dis. 2016;8(6):1205–1209. doi:10.21037/jtd.2016.04.19.

Return to footnote 174 referrer

Footnote 175

Faroug R, Psyllakis P, Gulati A, Makvana S, Pareek M, Mangwani J. Diagnosis and treatment of tuberculosis of the foot and ankle-A literature review. Foot (Edinb). 2018;37:105–112. doi:10.1016/j.foot.2018.07.005.

Return to footnote 175 referrer

Footnote 176

Barik S, Choudhury AK, Singh V, Bali S. Extra-Spinal Osteoarticular Tuberculosis: A Retrospective Analysis of 103 Cases. Curr Health Sci J. 2019;45(2):142–147. doi:10.12865/chsj.45.02.03.

Return to footnote 176 referrer

Footnote 177

Watts HG, Lifeso RM. Tuberculosis of bones and joints. J Bone Joint Surg Am. 1996;78(2):288–298. doi:10.2106/00004623-199602000-00019.

Return to footnote 177 referrer

Footnote 178

Hogan JI, Hurtado RM, Nelson SB. Mycobacterial Musculoskeletal Infections. Infect Dis Clin North Am. 2017;31(2):369–382. doi:10.1016/j.idc.2017.01.007.

Return to footnote 178 referrer

Footnote 179

Choi JA, Koh SH, Hong SH, Koh YH, Choi JY, Kang HS. Rheumatoid arthritis and tuberculosis arthritis: differentiating MRI features. AJR Am J Roentgenol. 2009;193(5):1347–1353. doi:10.2214/AJR.08.2164.

Return to footnote 179 referrer

Footnote 180

Sawlani V, Chandra T, Mishra RN, Aggarwal A, Jain UK, Gujral RB. MRI features of tuberculosis of peripheral joints. Clin Radiol. 2003;58(10):755–762. doi:10.1016/s0009-9260(03)00271-x.

Return to footnote 180 referrer

Footnote 181

Sanghvi DA, Iyer VR, Deshmukh T, Hoskote SS. MRI features of tuberculosis of the knee. Skeletal Radiol. 2009;38(3):267–273. doi:10.1007/s00256-008-0617-2.

Return to footnote 181 referrer

Footnote 182

Shu CC, Wang JY, Yu CJ, Lee LN. Mycobacterial arthritis of large joints. Ann Rheum Dis. 2009;68(9):1504–1505. doi:10.1136/ard.2008.095554.

Return to footnote 182 referrer

Footnote 183

Donald PR. The chemotherapy of osteo-articular tuberculosis with recommendations for treatment of children. J Infect. 2011;62(6):411–439. doi:10.1016/j.jinf.2011.04.239.

Return to footnote 183 referrer

Footnote 184

Controlled trial of short-course regimens of chemotherapy in the ambulatory treatment of spinal tuberculosis. Results at three years of a study in Korea. Twelfth report of the Medical Research Council Working Party on Tuberculosis of the Spine. J Bone Joint Surg Br. 1993;75(2):240–248. doi:10.1302/0301-620x.75b2.8444944.

Return to footnote 184 referrer

Footnote 185

A 15-year assessment of controlled trials of the management of tuberculosis of the spine in Korea and Hong Kong. Thirteenth Report of the Medical Research Council Working Party on Tuberculosis of the Spine. J Bone Joint Surg Br. 1998;80(3):456–462. doi:10.1302/0301-620x.80b3.8544.

Return to footnote 185 referrer

Footnote 186

Parthasarathy R, Sriram K, Santha T, Prabhakar R, Somasundaram PR, Sivasubramanian S. Short-course chemotherapy for tuberculosis of the spine. A comparison between ambulant treatment and radical surgery-ten-year report. J Bone Joint Surg Br. 1999;81(3):464–471. doi:10.1302/0301-620x.81b3.9043.

Return to footnote 186 referrer

Footnote 187

Jain AK, Sreenivasan R, Saini NS, Kumar S, Jain S, Dhammi IK. Magnetic resonance evaluation of tubercular lesion in spine. Int Orthop. 2012;36(2):261–269. doi:10.1007/s00264-011-1380-x.

Return to footnote 187 referrer

Footnote 188

Mittal S, Jain AK, Chakraborti KL, Aggarwal AN, Upreti L, Bhayana H. Evaluation of Healed Status in Tuberculosis of Spine by Fluorodeoxyglucose-positron Emission Tomography/Computed Tomography and Contrast Magnetic Resonance Imaging. Indian J Orthop. 2019;53(1):160–168. doi:10.4103/ortho.IJOrtho_224_18.

Return to footnote 188 referrer

Footnote 189

Jutte PC, Van Loenhout-Rooyackers JH. Routine surgery in addition to chemotherapy for treating spinal tuberculosis. Cochrane Database Syst Rev. 2006;(1);Cd004532. doi:10.1002/14651858.CD004532.pub2.

Return to footnote 189 referrer

Footnote 190

Thwaites G, Fisher M, Hemingway C, Scott G, Solomon T, Innes J. British Infection Society guidelines for the diagnosis and treatment of tuberculosis of the central nervous system in adults and children. J Infect. 2009;59(3):167–187. doi:10.1016/j.jinf.2009.06.011.

Return to footnote 190 referrer

Footnote 191

Leonard JM. Central Nervous System Tuberculosis. Microbiol Spectr. 2017;5(2). doi:10.1128/microbiolspec.TNMI7-0044-2017.

Return to footnote 191 referrer

Footnote 192

Arvanitakis Z, Long RL, Hershfield ES, et al. M. tuberculosis molecular variation in CNS infection: evidence for strain-dependent neurovirulence. Neurology. 1998;50(6):1827–1832. doi:10.1212/WNL.50.6.1827.

Return to footnote 192 referrer

Footnote 193

Hsu PC, Yang CC, Ye JJ, Huang PY, Chiang PC, Lee MH. Prognostic factors of tuberculosis meningitis in adults: a 6-year retrospective study at a tertiary hospital in northern Taiwan. J Microbiol Immunol Infect. 2010;43(2):111–118. doi:10.1016/S1684-1182(10)60018-7.

Return to footnote 193 referrer

Footnote 194

Wilkinson RJ, Rohlwink U, Misra UK, Tuberculous Meningitis International Research Consortium, et al. Tuberculous meningitis. Nat Rev Neurol. 2017;13(10):581–598. doi:10.1038/nrneurol.2017.120.

Return to footnote 194 referrer

Footnote 195

Chiang SS, Khan FA, Milstein MB, et al. Treatment outcomes of childhood tuberculous meningitis: a systematic review and meta-analysis. Lancet Infect Dis. Oct 2014;14(10):947–957. doi:10.1016/S1473-3099(14)70852-7.

Return to footnote 195 referrer

Footnote 196

Thwaites GE, Nguyen DB, Nguyen HD, et al. Dexamethasone for the treatment of tuberculous meningitis in adolescents and adults. N Engl J Med. 2004;351(17):1741–1751. doi:10.1056/NEJMoa040573.

Return to footnote 196 referrer

Footnote 197

Torok ME, Nguyen DB, Tran TH, et al. Dexamethasone and long-term outcome of tuberculous meningitis in Vietnamese adults and adolescents. PLoS One. 2011;6(12):e27821. doi:10.1371/journal.pone.0027821.

Return to footnote 197 referrer

Footnote 198

Erdem H, Ozturk-Engin D, Tireli H, et al. Hamsi scoring in the prediction of unfavorable outcomes from tuberculous meningitis: results of Haydarpasa-II study. J Neurol. 2015;262(4):890–898. doi:10.1007/s00415-015-7651-5.

Return to footnote 198 referrer

Footnote 199

Marais BJ, Heemskerk AD, Marais SS, Tuberculous Meningitis International Research Consortium, et al. Standardized Methods for Enhanced Quality and Comparability of Tuberculous Meningitis Studies. Clin Infect Dis. 2017;64(4):501–509. doi:10.1093/cid/ciw757.

Return to footnote 199 referrer

Footnote 200

Thao LTP, Wolbers M, Heemskerk AD, et al. Dynamic Prediction of Death in Patients With Tuberculous Meningitis Using Time-updated Glasgow Coma Scale and Plasma Sodium Measurements. Clin Infect Dis. 2020;70(5):827–834. doi:10.1093/cid/ciz262.

Return to footnote 200 referrer

Footnote 201

Sanei Taheri M, Karimi MA, Haghighatkhah H, Pourghorban R, Samadian M, Delavar Kasmaei H. Central nervous system tuberculosis: an imaging-focused review of a reemerging disease. Radiol Res Pract. 2015;2015:202806. doi:10.1155/2015/202806.

Return to footnote 201 referrer

Footnote 202

Botha H, Ackerman C, Candy S, Carr JA, Griffith-Richards S, Bateman KJ. Reliability and diagnostic performance of CT imaging criteria in the diagnosis of tuberculosis meningitis. PLoS One. 2012;7(6):e38982. doi:10.1371/journal.pone.0038982.

Return to footnote 202 referrer

Footnote 203

Pienaar M, Andronikou S, van Toorn R. MRI to demonstrate diagnostic features and complications of TBM not seen with CT. Childs Nerv Syst. 2009;25(8):941–947. doi:10.1007/s00381-008-0785-3.

Return to footnote 203 referrer

Footnote 204

Bourgi K, Fiske C, Sterling TR. Tuberculosis Meningitis. Curr Infect Dis Rep. 2017;19(11):39. doi:10.1007/s11908-017-0595-4.

Return to footnote 204 referrer

Footnote 205

Stewart SM. The bacteriological diagnosis of tuberculous meningitis. J Clin Pathol. 1953;6(3):241–242. doi:10.1136/jcp.6.3.241.

Return to footnote 205 referrer

Footnote 206

Kennedy DH, Fallon RJ. Tuberculous meningitis. JAMA. 1979;241(3):264–268.

Return to footnote 206 referrer

Footnote 207

Chakravorty S, Simmons AM, Rowneki M, et al. The New Xpert MTB/RIF Ultra: Improving Detection of Mycobacterium tuberculosis and Resistance to Rifampin in an Assay Suitable for Point-of-Care Testing. mBio. 2017;8(4). doi:10.1128/mBio.00812-17.

Return to footnote 207 referrer

Footnote 208

World Health Organization. Automated Real-Time Nucleic Acid Amplification Technology for Rapid and Simultaneous Detection of Tuberculosis and Rifampicin Resistance: Xpert MTB/RIF Assay for the Diagnosis of Pulmonary and Extra-Pulmonary TB in Adults and Children. Policy Update. Geneva: World Health Organization. 2013.

Return to footnote 208 referrer

Footnote 209

World Health Organization. WHO meeting report of a technical expert consultation: non-inferiority analysis of Xpert MTF/RIF Ultra compared to Xpert MTB/RIF. Geneva: World Health Organization. 2017. https://apps.who.int/iris/handle/10665/254792. License: CC BY-NC-SA 3.0 IGO. Accessed March 2, 2022.

Return to footnote 209 referrer

Footnote 210

Kent SJ, Crowe SM, Yung A, Lucas CR, Mijch AM. Tuberculous meningitis: a 30-year review. Clin Infect Dis. 1993;17(6):987–994. doi:10.1093/clinids/17.6.987.

Return to footnote 210 referrer

Footnote 211

Thwaites G, Chau TT, Mai NT, Drobniewski F, McAdam K, Farrar J. Tuberculous meningitis. J Neurol Neurosurg Psychiatry. 2000;68(3):289–299. doi:10.1136/jnnp.68.3.289.

Return to footnote 211 referrer

Footnote 212

Rock RB, Olin M, Baker CA, Molitor TW, Peterson PK. Central nervous system tuberculosis: pathogenesis and clinical aspects. Clin Microbiol Rev. 2008;21(2):243–261, table of contents. doi:10.1128/CMR.00042-07.

Return to footnote 212 referrer

Footnote 213

Nahid P, Dorman SE, Alipanah N, et al. Official American Thoracic Society/Centers for Disease Control and Prevention/Infectious Diseases Society of America Clinical Practice Guidelines: Treatment of Drug-Susceptible Tuberculosis. Clin Infect Dis. 2016;63(7):e147–e195. doi:10.1093/cid/ciw376.

Return to footnote 213 referrer

Footnote 214

National Institute for Health and Care Excellence. Tuberculosis [NICE Guideline No. 33]. November 13, 2020. https://www.nice.org.uk/guidance/ng33. Accessed November 13, 2020.

Return to footnote 214 referrer

Footnote 215

American Academy of Pediatrics. Red Book: 2018 Report of the Committee on Infectious Diseases. 31st ed. Itasca, IL: American Academy of Pediatrics; 2018.

Return to footnote 215 referrer

Footnote 216

World Health Organization. Guidelines for treatment of drug-susceptible tuberculosis and patient care, 2017 update. World Health Organization; 2017. https://apps.who.int/iris/handle/10665/255052. Accessed March 2, 2022.

Return to footnote 216 referrer

Footnote 217

World Health Organization. Treatment of Tuberculosis: guidelines. 4th ed. Geneva: World Health Organization; 2010. https://apps.who.int/iris/handle/10665/44165. Accessed on March 2, 2022.

Return to footnote 217 referrer

Footnote 218

Cresswell FV, Te Brake L, Atherton R, et al. Intensified antibiotic treatment of tuberculosis meningitis. Expert Rev Clin Pharmacol. 2019;12(3):267–288. doi:10.1080/17512433.2019.1552831.

Return to footnote 218 referrer

Footnote 219

ClinicalTrials.gov [Internet]. Intensified Tuberculosis Treatment to Reduce the Mortality of Patients With Tuberculosis Meningitis (INTENSE-TBM). National Library of Medicine (US). Updated August 28, 2020. Accessed September 28, 2020. https://clinical-trials.gov/ct2/show/NCT04145258.

Return to footnote 219 referrer

Footnote 220

Marais S, Cresswell FV, Hamers RL, et al. High dose oral rifampicin to improve survival from adult tuberculosis meningitis: A randomised placebo-controlled double-blinded phase III trial (the HARVEST study). Wellcome Open Research. 2019;4.190. doi:10.12688/wellcomeopenres.15565.1.

Return to footnote 220 referrer

Footnote 221

ClinicalTrials.gov [Internet]. Optimizing Treatment to Improve TBM Outcomes in Children (TBM-KIDS). National Library of Medicine (US). Sept 28, 2020. Updated Aug 13, 2020. https://clinicaltrials.gov/ct2/show/NCT02958709. Accessed September 29, 2020.

Return to footnote 221 referrer

Footnote 222

Charlie L, Abay SM, Tesfaye A, Mlera RN, Mwango S, Goretti M. Safety and efficacy of high-dose rifampicin in the management of tuberculosis meningitis: Systematic review and meta-analysis. Int J Mycobacteriol. 2021;10(3):312–319. doi:10.4103/ijmy.ijmy_135_21.

Return to footnote 222 referrer

Footnote 223

Cresswell FV, Meya DB, Kagimu E, et al. High-Dose Oral and Intravenous Rifampicin for the Treatment of Tuberculosis Meningitis in Predominantly Human Immunodeficiency Virus (HIV)-Positive Ugandan Adults: A Phase II Open-Label Randomized Controlled Trial. Clin Infect Dis. 2021;73(5):876–884. doi:10.1093/cid/ciab162.

Return to footnote 223 referrer

Footnote 224

Wasserman S, Davis A, Stek C, et al. Plasma Pharmacokinetics of High-Dose Oral versus Intravenous Rifampicin in Patients with Tuberculous Meningitis: a Randomized Controlled Trial. Antimicrob Agents Chemother. 2021;65(8):e0014021. doi:10.1128/AAC.00140-21.

Return to footnote 224 referrer

Footnote 225

Svensson EM, Dian S, Te Brake L, et al. Model-Based Meta-analysis of Rifampicin Exposure and Mortality in Indonesian Tuberculous Meningitis Trials. Clin Infect Dis. 2020;71(8):1817–1823. Nov 5. doi:10.1093/cid/ciz1071.

Return to footnote 225 referrer

Footnote 226

Arbiv. Thorax. 2022.

Return to footnote 226 referrer

Footnote 227

Ellard GA, Humphries MJ, Allen BW. Cerebrospinal fluid drug concentrations and the treatment of tuberculous meningitis. Am Rev Respir Dis. 1993;148(3):650–655. doi:10.1164/ajrccm/148.3.650.

Return to footnote 227 referrer

Footnote 228

Rizvi I, Malhotra HS, Garg RK, Kumar N, Uniyal R, Pandey S. Fluoroquinolones in the management of tuberculous meningitis: Systematic review and meta-analysis. J Infect. 2018;77(4):261–275. doi:10.1016/j.jinf.2018.06.009.

Return to footnote 228 referrer

Footnote 229

Ruslami R, Ganiem AR, Dian S, et al. Intensified regimen containing rifampicin and moxifloxacin for tuberculosis meningitis: an open-label, randomised controlled phase 2 trial. Lancet Infect Dis. 2013;13(1):27–35. doi:10.1016/S1473-3099(12)70264-5.

Return to footnote 229 referrer

Footnote 230

Heemskerk AD, Bang ND, Mai NT, et al. Intensified Antituberculosis Therapy in Adults with Tuberculous Meningitis. N Engl J Med. 2016;374(2):124–134. doi:10.1056/NEJMoa1507062.

Return to footnote 230 referrer

Footnote 231

Heemskerk AD, Nguyen MTH, Dang HTM, et al. Clinical Outcomes of Patients With Drug-Resistant Tuberculosis Meningitis Treated With an Intensified Antituberculosis Regimen. Clin Infect Dis. 2017;65(1):20–28. doi:10.1093/cid/cix230.

Return to footnote 231 referrer

Footnote 232

Sun F, Ruan Q, Wang J, et al. Linezolid manifests a rapid and dramatic therapeutic effect for patients with life-threatening tuberculous meningitis. Antimicrob Agents Chemother. 2014;58(10):6297–6301. doi:10.1128/AAC.02784-14.

Return to footnote 232 referrer

Footnote 233

Li H, Lu J, Liu J, Zhao Y, Ni X, Zhao S. Linezolid is Associated with Improved Early Outcomes of Childhood Tuberculosis Meningitis. Pediatr Infect Dis J. 2016;35(6):607–610. doi:10.1097/INF.0000000000001114.

Return to footnote 233 referrer

Footnote 234

Alvarez-Uria G, Midde M, Pakam R, Naik PK. Initial Antituberculous Regimen with Better Drug Penetration into Cerebrospinal Fluid Reduces Mortality in HIV Infected Patients with Tuberculous Meningitis: Data from an HIV Observational Cohort Study. Tuberc Res Treat. 2013;2013:242604. doi:10.1155/2013/242604.

Return to footnote 234 referrer

Footnote 235

Donald PR, Schoeman JF, Van Zyl LE, De Villiers JN, Pretorius M, Springer P. Intensive short course chemotherapy in the management of tuberculosis meningitis. Int J Tuberc Lung Dis. 1998;2(9):704–711.

Return to footnote 235 referrer

Footnote 236

Jullien S, Ryan H, Modi M, Bhatia R. Six months therapy for tuberculous meningitis. Cochrane Database Syst Rev. 2016;9:CD012091. doi:10.1002/14651858.CD012091.pub2.

Return to footnote 236 referrer

Footnote 237

World Health Organization. Guidelines for treatment of drug-susceptible tuberculosis and patient care, 2017 update. 2017. Licence: CC BY-NC-SA 3.0 IGO.

Return to footnote 237 referrer

Footnote 238

Nahid P, Dorman SE, Alipanah N, et al. Official American Thoracic Society/Centers for Disease Control and Prevention/Infectious Diseases Society of America Clinical Practice Guidelines: Treatment of Drug-Susceptible Tuberculosis. Clin Infect Dis. 2016;63(7):e147–e195. doi:10.1093/cid/ciw376.

Return to footnote 238 referrer

Footnote 239

Prasad K, Singh MB, Ryan H. Corticosteroids for managing tuberculous meningitis. Cochrane Database Syst Rev. 2016;4:CD002244. doi:10.1002/14651858.CD002244.pub4.

Return to footnote 239 referrer

Footnote 240

Donovan J, Thwaites GE, Huynh J. Tuberculosis meningitis: where to from here? Curr Opin Infect Dis. 2020;33(3):259–266. doi:10.1097/QCO.0000000000000648.

Return to footnote 240 referrer

Footnote 241

Schoeman JF, Janse van Rensburg A, Laubscher JA, Springer P. The role of aspirin in childhood tuberculous meningitis. J Child Neurol. 2011;26(8):956–962. doi:10.1177/0883073811398132.

Return to footnote 241 referrer

Footnote 242

Mai NT, Dobbs N, Phu NH, et al. A randomised double blind placebo controlled phase 2 trial of adjunctive aspirin for tuberculosis meningitis in HIV-uninfected adults. eLife. 2018;7:e33478. doi:10.7554/eLife.33478.

Return to footnote 242 referrer

Footnote 243

ClinicalTrials.gov [Internet]. Linezolid, Aspirin and Enhanced Dose Rifampicin in HIV-TBM (LASER-TBM). National Library of Medicine (US). Sept 28 2020. Updated August 14, 2020. https://clinicaltrials.gov/ct2/show/NCT03927313.

Return to footnote 243 referrer

Footnote 244

ISRCTN registry [Internet]. SURE: Short intensive treatment for children with tuberculosis meningitis. BMC. September, 28, 2020. Updated Sept 23, 2020. doi:10.1186/ISRCTN40829906.

Return to footnote 244 referrer

Footnote 245

Rohlwink UK, Kilborn T, Wieselthaler N, Banderker E, Zwane E, Figaji AA. Imaging Features of the Brain, Cerebral Vessels and Spine in Pediatric Tuberculous Meningitis With Associated Hydrocephalus. Pediatr Infect Dis J. Oct 2016;35(10):e301–e310. doi:10.1097/INF.0000000000001236.

Return to footnote 245 referrer

Footnote 246

Marais S, Van Toorn R, Chow FC, Tuberculous Meningitis International Research Consortium, et al. Management of intracranial tuberculous mass lesions: how long should we treat for? Wellcome Open Res. 2019;4:158. doi:10.12688/wellcomeopenres.15501.2.

Return to footnote 246 referrer

Footnote 247

Donovan J, Figaji A, Imran D, Phu NH, Rohlwink U, Thwaites GE. The neurocritical care of tuberculosis meningitis. Lancet Neurol. 2019;18(8):771–783. doi:10.1016/S1474-4422(19)30154-1.

Return to footnote 247 referrer

Footnote 248

Crump JA, Reller LB. Two decades of disseminated tuberculosis at a university medical center: the expanding role of mycobacterial blood culture. Clin Infect Dis. 2003;37(8):1037–1043. Oct 15. doi:10.1086/378273.

Return to footnote 248 referrer

Footnote 249

Meira L, Chaves C, Araujo D, et al. Predictors and outcomes of disseminated tuberculosis in an intermediate burden setting. Pulmonology. 2019;25(6):320–327. doi:10.1016/j.pulmoe.2018.11.001.

Return to footnote 249 referrer

Footnote 250

Lee J, Lim JK, Kim EJ, et al. Comparison of clinical manifestations and treatment outcome according to age groups in adult patients with miliary tuberculosis. J Thorac Dis. 2018;10(5):2881–2889. doi:10.21037/jtd.2018.04.139.

Return to footnote 250 referrer

Footnote 251

Mohan A, Sharma SK, Pande JN. Acute respiratory distress syndrome (ARDS) in miliary tuberculosis: a twelve year experience. Indian J Chest Dis Allied Sci. 1996;38(3):157–162.

Return to footnote 251 referrer

Footnote 252

Boushab BM, Basco LK. Miliary tuberculosis and acute respiratory distress syndrome. J Clin Tuberc Other Mycobact Dis. 2019;16:100113. doi:10.1016/j.jctube.2019.100113.

Return to footnote 252 referrer

Footnote 253

Long R, O'Connor R, Palayew M, Hershfield E, Manfreda J. Disseminated tuberculosis with and without a miliary pattern on chest radiograph: a clinical-pathologic-radiologic correlation. Int J Tuberc Lung Dis. 1997;1(1):52–58.

Return to footnote 253 referrer

Footnote 254

Sharma SK, Mohan A, Sharma A. Miliary tuberculosis: A new look at an old foe. J Clin Tuberc Other Mycobact Dis. 2016;3:13–27. doi:10.1016/j.jctube.2016.03.003.

Return to footnote 254 referrer

Footnote 255

Heiden D, Saranchuk P, Keenan JD, et al. Eye examination for early diagnosis of disseminated tuberculosis in patients with AIDS. Lancet Infect Dis. 2016;16(4):493–499. doi:10.1016/S1473-3099(15)00269-8.

Return to footnote 255 referrer

Footnote 256

Mehta S. Patterns of ocular inflammation in patients with miliary tuberculosis. F1000Res. 2017;6:412. doi:10.12688/f1000research.11035.1.

Return to footnote 256 referrer

Footnote 257

Rieder HL, Kelly GD, Bloch AB, Cauthen GM, Snider DE.Jr. Tuberculosis diagnosed at death in the United States. Chest. 1991;100(3):678–681. doi:10.1378/chest.100.3.678.

Return to footnote 257 referrer

Footnote 258

Optican RJ, Ost A, Ravin CE. High-resolution computed tomography in the diagnosis of miliary tuberculosis. Chest. 1992;102(3):941–943. doi:10.1378/chest.102.3.941.

Return to footnote 258 referrer

Footnote 259

Lefebvre N, Argemi X, Meyer N, et al. Clinical usefulness of 18F-FDG PET/CT for initial staging and assessment of treatment efficacy in patients with lymph node tuberculosis. Nucl Med Biol. 2017;50:17–24. doi:10.1016/j.nucmedbio.2017.04.003.

Return to footnote 259 referrer

Footnote 260

Abbara A, Davidson RN, Etiology and management of genitourinary tuberculosis. Nat Rev Urol. 2011;8(12):678–688. doi:10.1038/nrurol.2011.172.

Return to footnote 260 referrer

Footnote 261

Fanning A. Tuberculosis: 6. Extrapulmonary disease. CMAJ. 1999;160(11):1597–1603.

Return to footnote 261 referrer

Footnote 262

Sourial MW, Brimo F, Horn R, Andonian S. Genitourinary tuberculosis in North America: A rare clinical entity. Can Urol Assoc J. 2015;9(7-8):E484–9. doi:10.5489/cuaj.2643.

Return to footnote 262 referrer

Footnote 263

Cao Y, Fan Y, Chen Y, et al. Gross Hematuria Is More Common in Male and Older Patients with Renal Tuberculosis in China: A Single-Center 15-Year Clinical Experience. Urol Int. 2017;99(3):290–296. doi:10.1159/000464472.

Return to footnote 263 referrer

Footnote 264

Eastwood JB, Corbishley CM, Grange JM. Tuberculosis and the kidney. J Am Soc Nephrol. 2001;12(6):1307–1314. doi:10.1681/ASN.V1261307.

Return to footnote 264 referrer

Footnote 265

Merchant S, Bharati A, Merchant N. Tuberculosis of the genitourinary system-Urinary tract tuberculosis: Renal tuberculosis-Part II. Indian J Radiol Imaging. 2013;23(1):64–77. doi:10.4103/0971-3026.113617.

Return to footnote 265 referrer

Footnote 266

Maclean KA, Becker AK, Chang SD, Harris AC. Extrapulmonary tuberculosis: imaging features beyond the chest. Can Assoc Radiol J. 2013;64(4):319–324. doi:10.1016/j.carj.2012.07.002.

Return to footnote 266 referrer

Footnote 267

Wang Y, Wu JP, Qin GC, et al. Computerised tomography and intravenous pyelography in urinary tuberculosis: a retrospective descriptive study. Int J Tuberc Lung Dis. 2015;19(12):1441–1447. doi:10.5588/ijtld.14.0888.

Return to footnote 267 referrer

Footnote 268

Webster D, Long R, Shandro C, et al. Fluoroquinolone resistance among renal tuberculosis isolates in Alberta Canada;1990-2003. International Journal of Tuberculosis and Lung Disease. 2010;14:217–222.

Return to footnote 268 referrer

Footnote 269

Goldfarb DS. SL. Tuberculosis of the genitourinary tract. 1996. 609–622. Tuberculosis.

Return to footnote 269 referrer

Footnote 270

Grace GA, Devaleenal DB, Natrajan M. Genital tuberculosis in females. Indian J Med Res. 2017;145(4):425–436. doi:10.4103/ijmr.IJMR_1550_15.

Return to footnote 270 referrer

Footnote 271

Sharma JB, Sharma E, Sharma S, Dharmendra S. Female genital tuberculosis: Revisited. Indian J Med Res. 2018;148(Suppl):S71–s83. Dec. doi:10.4103/ijmr.IJMR_648_18.

Return to footnote 271 referrer

Footnote 272

Gupta B, Shree S, Rajaram S, Goel N. Genital tuberculosis: Unusual presentations. Int J Mycobacteriol. 2016;5(3):357–359. doi:10.1016/j.ijmyco.2016.06.017.

Return to footnote 272 referrer

Footnote 273

Khanna A, Agrawal A. Markers of genital tuberculosis in infertility. Singapore Med J. 2011;52(12):864–867.

Return to footnote 273 referrer

Footnote 274

Shah HU, Sannananja B, Baheti AD, Udare AS, Badhe PV. Hysterosalpingography and ultrasonography findings of female genital tuberculosis. Diagn Interv Radiol. 2015;21(1):10–15. doi:10.5152/dir.2014.13517.

Return to footnote 274 referrer

Footnote 275

Sharma JB, Roy KK, Pushparaj M, Kumar S, Malhotra N, Mittal S. Laparoscopic findings in female genital tuberculosis. Arch Gynecol Obstet. 2008;278(4):359–364. doi:10.1007/s00404-008-0586-7.

Return to footnote 275 referrer

Footnote 276

Kumar P, Shah NP, Singhal A, et al. Association of tuberculous endometritis with infertility and other gynecological complaints of women in India. J Clin Microbiol. 2008;46(12):4068–4070. doi:10.1128/jcm.01162-08.

Return to footnote 276 referrer

Footnote 277

Neelam BM. Namita K. Genital tuberculosis and its consequences on subsequent fertility. J Obstet Gynecol India. 2005; 2005(6):534–537.

Return to footnote 277 referrer

Footnote 278

Flibotte JJ, Lee GE, Buser GL, et al. Infertility, in vitro fertilization and congenital tuberculosis. J Perinatol. 2013;33(7):565–568. doi:10.1038/jp.2012.146.

Return to footnote 278 referrer

Footnote 279

Yadav S, Singh P, Hemal A, Kumar R. Genital tuberculosis: current status of diagnosis and management. Transl Androl Urol. 2017;6(2):222–233. doi:10.21037/tau.2016.12.04.

Return to footnote 279 referrer

Footnote 280

Aziz EM, Abdelhak K, Hassan FM. Tuberculous prostatitis: mimicking a cancer. Pan Afr Med J. 2016;25:130 doi:10.11604/pamj.2016.25.130.7577.

Return to footnote 280 referrer

Footnote 281

Gonzalez OY, Musher DM, Brar I, et al. Spectrum of bacille Calmette-Guérin (BCG) infection after intravesical BCG immunotherapy. Clin Infect Dis. 2003;36(2):140–148. doi:10.1086/344908.

Return to footnote 281 referrer

Footnote 282

Kim S, Wise G, Schleel P, Khani F, Herr H. Adverse Effects of Intravesical bacillus Calmette-Guerin Therap. AUA Update Series. 2018;37(Lesson 8)

Return to footnote 282 referrer

Footnote 283

Lamm DL. Efficacy and safety of bacille Calmette-Guérin immunotherapy in superficial bladder cancer. Clin Infect Dis. 2000;31 Suppl 3:S86–S90. doi:10.1086/314064.

Return to footnote 283 referrer

Footnote 284

Larsen ES, Nordholm AC, Lillebaek T, Holden IK, Johansen IS. The epidemiology of bacille Calmette-Guérin infections after bladder instillation from 2002 through 2017: a nationwide retrospective cohort study. BJU Int. 2019;124(6):910–916. doi:10.1111/bju.14793.

Return to footnote 284 referrer

Footnote 285

Pérez-Jacoiste Asín MA, Fernández-Ruiz M, López-Medrano F, et al. Bacillus Calmette-Guérin (BCG) infection following intravesical BCG administration as adjunctive therapy for bladder cancer: incidence, risk factors, and outcome in a single-institution series and review of the literature. Medicine (Baltimore). 2014;93(17):236–254. doi:10.1097/MD.0000000000000119.

Return to footnote 285 referrer

Footnote 286

Marques M, Vazquez D, Sousa S, Mesquita G, Duarte M, Ferreira R. Disseminated Bacillus Calmette-Guérin (BCG) infection with pulmonary and renal involvement: A rare complication of BCG immunotherapy. A Case Report and Narrative Review. Pulmonology. 2020;26(6):346–352. doi:10.1016/j.pulmoe.2019.10.001.

Return to footnote 286 referrer

Footnote 287

Waked R, Choucair J, Chehata N, Haddad E, Saliba G. Intravesical Bacillus Calmette-Guérin (BCG) treatment's severe complications: A single institution review of incidence, presentation and treatment outcome. J Clin Tuberc Other Mycobact Dis. 2020;19:100149. doi:10.1016/j.jctube.2020.100149.

Return to footnote 287 referrer

Footnote 288

Cek M, Lenk S, Naber KG, Members of the Urinary Tract Infection (UTI) Working Group of the European Association of Urology (EAU) Guidelines Office, et al. EAU guidelines for the management of genitourinary tuberculosis. Eur Urol. 2005;48(3):353–362. doi:10.1016/j.eururo.2005.03.008.

Return to footnote 288 referrer

Footnote 289

Gow JG. Genitourinary tuberculosis: a 7-year review. Br J Urol. 1979;51(4):239–244. doi:10.1111/j.1464-410x.1979.tb04700.x.

Return to footnote 289 referrer

Footnote 290

Migliori GB, Sotgiu G, Rosales-Klintz S, et al. ERS/ECDC Statement: European Union standards for tuberculosis care, 2017 update. Eur Respir J. 2018;51(5):1702678. doi:10.1183/13993003.02678-2017.

Return to footnote 290 referrer

Footnote 291

Sharma JB, Singh N, Dharmendra S, et al. Six months versus nine months anti-tuberculous therapy for female genital tuberculosis: a randomized controlled trial. Eur J Obstet Gynecol Reprod Biol. 2016;203:264–273. doi:10.1016/j.ejogrb.2016.05.035.

Return to footnote 291 referrer

Footnote 292

Syed FF, Mayosi BM. A modern approach to tuberculous pericarditis. Prog Cardiovasc Dis. 2007;50(3):218–236. doi:10.1016/j.pcad.2007.03.002.

Return to footnote 292 referrer

Footnote 293

Cherian G, Habashy AG, Uthaman B, Cherian JM, Salama A, Anim JT. Detection and follow-up of mediastinal lymph node enlargement in tuberculous pericardial effusions using computed tomography. Am J Med. 2003;114(4):319–322. doi:10.1016/s0002-9343(02)01521-8.

Return to footnote 293 referrer

Footnote 294

Sun JS, Park KJ, Kang DK. CT findings in patients with pericardial effusion: differentiation of malignant and benign disease. AJR Am J Roentgenol. 2010;194(6):W489–94. doi:10.2214/AJR.09.2599.

Return to footnote 294 referrer

Footnote 295

Agner RC, Gallis HA. Pericarditis: differential diagnostic considerations. Arch Intern Med. 1979;139(4):407–412. doi:10.1001/ archinte.139.4.407.

Return to footnote 295 referrer

Footnote 296

Wiysonge CS, Ntsekhe M, Thabane L, et al. Interventions for treating tuberculous pericarditis. Cochrane Database Syst Rev. 2017;9:CD000526. doi:10.1002/14651858.CD000526.pub2

Return to footnote 296 referrer

Footnote 297

Reuter H, Burgess LJ, Schneider J, Van Vuuren W, Doubell AF. The role of histopathology in establishing the diagnosis of tuberculous pericardial effusions in the presence of HIV. Histopathology. 2006;48(3):295–302. doi:10.1111/j.1365-2559.2005.02320.x.

Return to footnote 297 referrer

Footnote 298

Tuon FF, Litvoc MN, Lopes MI. Adenosine deaminase and tuberculous pericarditis-a systematic review with meta-analysis. Acta Trop. 2006;99(1):67–74. doi:10.1016/j.actatropica.2006.07.004.

Return to footnote 298 referrer

Footnote 299

Strang JI, Kakaza HH, Gibson DG, Girling DJ, Nunn AJ, Fox W. Controlled trial of prednisolone as adjuvant in treatment of tuberculosis constrictive pericarditis in Transkei. Lancet. 1987;2(8573):1418–1422. doi:10.1016/S0140-6736(87)91127-5.

Return to footnote 299 referrer

Footnote 300

Reuter H, Burgess LJ, Louw VJ, Doubell AF. The management of tuberculosis pericardial effusion: experience in 233 consecutive patients. Cardiovasc J S Afr. 2007;18(1):20–25.

Return to footnote 300 referrer

Footnote 301

Mayosi BM, Ntsekhe M, Bosch J, IMPI Trial Investigators, et al. Prednisolone and Mycobacterium indicus pranii in tuberculous pericarditis. N Engl J Med. 2014;371(12):1121–1130. doi:10.1056/NEJMoa1407380.

Return to footnote 301 referrer

Footnote 302

Gupta V, Shoughy SS, Mahajan S, et al. Clinics of ocular tuberculosis. Ocul Immunol Inflamm. 2015;23(1):14–24. doi:10.3109/09273948.2014.986582.

Return to footnote 302 referrer

Footnote 303

Conant MM, Vrasich CR, Wongskhaluang JV, et al. Role of the Infectious Disease Consultant in Management of Patients With Tuberculosis-Associated Ocular Inflammation. Open Forum Infect Dis. 2016;3(1):ofv195. doi:10.1093/ofid/ofv195.

Return to footnote 303 referrer

Footnote 304

Patel SS, Saraiya NV, Tessler HH, Goldstein DA. Mycobacterial ocular inflammation: delay in diagnosis and other factors impacting morbidity. JAMA Ophthalmol. 2013;131(6):752–758. doi:10.1001/jamaophthalmol.2013.71.

Return to footnote 304 referrer

Footnote 305

Lynn WA, Lightman S. The eye in systemic infection. Lancet. 2004;364(9443):1439–1450. doi:10.1016/S0140-6736(04)17228-0.

Return to footnote 305 referrer

Footnote 306

Cunningham ET, Jr., Rathinam SR, Albini TA, Chee SP, Zierhut M. Tuberculous uveitis. Ocul Immunol Inflamm. 2015;23(1):2–6. doi:10.3109/09273948.2014.1004016.

Return to footnote 306 referrer

Footnote 307

Arora SK, Gupta V, Gupta A, Bambery P, Kapoor GS, Sehgal S. Diagnostic efficacy of polymerase chain reaction in granulomatous uveitis. Tuber Lung Dis. 1999;79(4):229–233. doi:10.1054/tuld.1999.0210.

Return to footnote 307 referrer

Footnote 308

Ang M, Htoon HM, Chee SP. Diagnosis of tuberculous uveitis: clinical application of an interferon-gamma release assay. Ophthalmology. 2009;116(7):1391–1396. doi:10.1016/j.ophtha.2009.02.005.

Return to footnote 308 referrer

Footnote 309

Trad S, Bodaghi B, Saadoun D. Update on Immunological Test (Quantiferon-TB Gold) Contribution in the Management of Tuberculosis-Related Ocular Inflammation. Ocul Immunol Inflamm. 2018;26(8):1192–1199. doi:10.1080/09273948.2017.1332232.

Return to footnote 309 referrer

Footnote 310

Lee C, Agrawal R, Pavesio C. Ocular Tuberculosis-A Clinical Conundrum. Ocul Immunol Inflamm. 2016;24(2):237–242. doi:10.3109/09273948.2014.985387.

Return to footnote 310 referrer

Footnote 311

Figueira L, Fonseca S, Ladeira I, Duarte R. Ocular tuberculosis: Position paper on diagnosis and treatment management. Rev Port Pneumol (2006). 2017;23(1):31–38. doi:10.1016/j.rppnen.2016.10.004.

Return to footnote 311 referrer

Footnote 312

Alvarez GG, Roth VR, Hodge W. Ocular tuberculosis: diagnostic and treatment challenges. Int J Infect Dis. 2009;13(4):432–435. doi:10.1016/j.ijid.2008.09.018.

Return to footnote 312 referrer

Footnote 313

Gan WL, Jones NP. Serpiginous-like choroiditis as a marker for tuberculosis in a non-endemic area. Br J Ophthalmol. 2013;97(5):644–647. doi:10.1136/bjophthalmol-2012-302918.

Return to footnote 313 referrer

Footnote 314

Ang M, Hedayatfar A, Wong W, Chee SP. Duration of anti-tubercular therapy in uveitis associated with latent tuberculosis: a case-control study. Br J Ophthalmol. 2012;96(3):332–336. doi:10.1136/bjophthalmol-2011-300209.

Return to footnote 314 referrer

Footnote 315

Bansal R, Gupta A, Gupta V, Dogra MR, Bambery P, Arora SK. Role of anti-tubercular therapy in uveitis with latent/manifest tuberculosis. Am J Ophthalmol. 2008;146(5):772–779. doi:10.1016/j.ajo.2008.06.011.

Return to footnote 315 referrer

Footnote 316

Agrawal R, Gupta B, Gonzalez-Lopez JJ, et al. The role of anti-tubercular therapy in patients with presumed ocular tuberculosis. Ocul Immunol Inflamm. 2015;23(1):40–46. doi:10.3109/09273948.2014.986584.

Return to footnote 316 referrer

Footnote 317

Sanghvi C, Bell C, Woodhead M, Hardy C, Jones N. Presumed tuberculous uveitis: diagnosis, management, and outcome. Eye (Lond). 2011;25(4):475–480. doi:10.1038/eye.2010.235.

Return to footnote 317 referrer

Footnote 318

Lou SM, Montgomery PA, Larkin KL, Winthrop K, Zierhut M, Rosenbaum JT, Uveitis Specialists Study Group Diagnosis and treatment for ocular tuberculosis among uveitis specialists: the international perspective. Ocul Immunol Inflamm. 2015;23(1):32–39. doi:10.3109/09273948.2014.994784.

Return to footnote 318 referrer

Footnote 319

Chen SC, Lin MC, Sheu SJ. Incidence and prognostic factor of ethambutol-related optic neuropathy: 10-year experience in southern Taiwan. Kaohsiung J Med Sci. 2015;31(7):358–362. doi:10.1016/j.kjms.2015.05.004.

Return to footnote 319 referrer

Footnote 320

van Zyl L, Du Plessis J, Viljoen J. Cutaneous tuberculosis overview and current treatment regimens. Tuberculosis (Edinb). 2015;95(6):629–638. doi:10.1016/j.tube.2014.12.006.

Return to footnote 320 referrer

Footnote 321

Chen Q, Chen W, Hao F. Cutaneous tuberculosis: A great imitator. Clin Dermatol. 2019;37(3):192–199. doi:10.1016/j.clindermatol.2019.01.008.

Return to footnote 321 referrer

Footnote 322

Burgin S, Pomeranz MK, Orbuch P, et al. Mycobacteria and the skin. In: Rom WN, Garay S, eds. Tuberculosis. Toronto: Little, Brown and Company; 2004;593–608.

Return to footnote 322 referrer

Footnote 323

Delaval L, Goulenok T, Achouh P, et al. New insights on tuberculous aortitis. J Vasc Surg. 2017;66(1):209–215. doi:10.1016/j.jvs.2016.11.045.

Return to footnote 323 referrer

Footnote 324

Liu A, Nicol E, Hu Y, Coates A. Tuberculous endocarditis. Int J Cardiol. 2013;167(3):640–645. doi:10.1016/j.ijcard.2012.08.009.

Return to footnote 324 referrer

Footnote 325

Hakawi AM, Alrajhi AA. Tuberculosis of the bone marrow: clinico-pathological study of 22 cases from Saudi Arabia. Int J Tuberc Lung Dis. 2006;10(9):1041–1044.

Return to footnote 325 referrer

Footnote 326

Long R, Guzman R, Greenberg H, Safneck J, Hershfield E. Tuberculous mycotic aneurysm of the aorta: review of published medical and surgical experience. Chest. 1999;115(2):522–531. doi:10.1378/chest.115.2.522.

Return to footnote 326 referrer

Footnote 327

Agarwal R, Gupta D, Aggarwal AN, Behera D, Jindal SK. Experience with ARDS caused by tuberculosis in a respiratory intensive care unit. Intensive Care Med. 2005;31(9):1284–1287. doi:10.1007/s00134-005-2721-2.

Return to footnote 327 referrer

Footnote 328

Lerolle N, Laanani M, Galicier L, et al. Factors associated with tuberculosis-associated haemophagocytic syndrome: a multicentre case-control study. Int j Tuberc Lung Dis. 2020;24(1):124–130. doi:10.5588/ijtld.19.0856.

Return to footnote 328 referrer

Footnote 329

Girgis NI, Farid Z, Kilpatrick ME, Sultan Y, Mikhail IA. Dexamethasone adjunctive treatment for tuberculous meningitis. Pediatr Infect Dis J. 1991;10(3):179-183. doi:10.1097/00006454-199103000-00002.

Return to footnote 329 referrer

Footnote 330

Schoeman JF, Van Zyl LE, Laubscher JA, Donald PR. Effect of corticosteroids on intracranial pressure, computed tomographic findings, and clinical outcome in young children with tuberculous meningitis. Pediatrics. 1997;99(2):226–231. doi:10.1542/peds.99.2.226.

Return to footnote 330 referrer

Footnote 331

Dutt AK, Moers D, Stead WW. Short-course chemotherapy for extrapulmonary tuberculosis. Nine years' experience. Ann Intern Med. 1986;104(1):7–12. doi:10.7326/0003-4819-104-1-7.

Return to footnote 331 referrer

Footnote 332

Ramachandran S, Clifton IJ, Collyns TA, Watson JP, Pearson SB. The treatment of spinal tuberculosis: a retrospective study. Int J Tuberc Lung Dis. 2005;9(5):541–544.

Return to footnote 332 referrer

Footnote 333

Dian S, Yunivita V, Ganiem AR, et al. Double-Blind, Randomized, Placebo-Controlled Phase II Dose-Finding Study To Evaluate High-Dose Rifampin for Tuberculosis Meningitis. Antimicrob Agents Chemother. 2018;62(12). doi:10.1128/AAC.01014-18.

Return to footnote 333 referrer

Footnote 334

Yunivita V, Dian S, Ganiem AR, et al. Pharmacokinetics and safety/tolerability of higher oral and intravenous doses of rifampicin in adult tuberculous meningitis patients. Int J Antimicrob Agents. 2016;48(4):415–421. doi:10.1016/j.ijantimicag.2016.06.016.

Return to footnote 334 referrer

Footnote 335

Skutil V, Varsa J, Obsitník M. Six-month chemotherapy for urogenital tuberculosis. Eur Urol. 1985;11(3):170–176. doi:10.1159/000472484.

Return to footnote 335 referrer

Page details

Date modified: