Physical and Chemical Properties

Information relating to the physical properties of long-chain (C9-C20) PFCAs is limited. Table 2 shows the available physical and chemical data, where available, for C9-C15 long-chain PFCAs. It has been suggested that the carbon-carbon conformation changes as the chain length increases, with longer chains becoming helical (Wang and Ober 1999), resulting in smaller cross-sectional diameter molecules where the chain may fold back on itself or not be completely linear. If so, then this would cause a change in the physical and chemical properties of the longer chain acids relative to the linear PFCAs (i.e., < C8).

Table 2. Available Physical/chemical Properties of C9-C15 PFCAs

Property Value Type Reference
C9 PFCA
Molecular mass (g/mol) 464.08 -
Melting point (°C) 77 Experimental Fontell and Lindman 1983
71 Blancou et al. 1976
71-72 Herbst et al. 1985
65 (CCl4) Beneficemalouet et al. 1991
59.3-61.1 Kunieda and Shinoda 1976
69-71 Ishikawaet al. 1983
Boiling point (°C) 203.4 Calculated Kaiser et al. 2005
Vapour pressure (Pa)at 25°C 1.3 – 99.97 kPa (99.6 - 203°C) Calculated Kaiser et al. 2005
0.10 Experimental Arp et al. 2006
Water solubility <0.2 percent weight at 60°C Experimental Fontell and Lindman 19831
1.3 g/L (critical micelle concentration) Experimental Kunieda and Shinoda 19761
pKa (dimensionless) <0.8 Calculated Goss 2008
log Koc (dimensionless) 2.3 – 2.48 Experimental Higgins and Luthy 2006
C10 PFCA
Molecular mass (g/mol) 514.08 -
Melting point (°C) 87.4-88.2 (CCl4) Experimental Bernett and Zisman 1959
87.4-88.2 (toluene) Experimental Bernett and Zisman 1959
83.5-85.5(CCl4, ethanol) Mukerjee and Handa 1981
76.5(CCl4) Ikawa et al. 1988
87.4-88.2 Hare et al. 1954
Boiling point (°C) 218 Kauck and Diesslin 1951
219.4 Calculated Kaiser et al.2005
203.4 Calculated Kaiser et al. 2005
218 Experimental Sigma Aldrich 2004
Vapour pressure (Pa) at 25°C 3.1 to 99.97 kPa (129.6 to 218.9°C) Calculated Kaiser et al.2005
-0.64 Experimental Arp et al. 2006
0.10 Experimental Arp et al. 2006
Water solubility (g/L) 5.14 Experimental Kauck and Diesslin 1951
0.40 (critical micelle concentration) Bernett and Zisman 19591
0.46 (critical micelle concentration at 30°C) Klevens and Raison 19541
pKa (dimensionless) 2.57512 Calculated Moroi et al.2001
log Koc (dimesionless) 2.65 – 2.87 Experimental Higgins and Luthy 2006
C11 PFCA
Molecular mass (g/mol) 564.1 -
Melting point (°C) 112-114 Experimental Huang et al. 1987
97.9-100.3 Kunieda and Shinoda 1976
Boiling point (°C) 238.4 at 101.325 kPa Calculated Kaiser et al. 2005
Vapour pressure (Pa) at 25°C 0.6 to 99.97 kPa (112 to 237.7°C) Calculated Kaiser et al. 2005
-0.98 Experimental Arp et al. 2006
log Koc (dimesionless) 3.19 – 3.41 Experimental Higgins and Luthy 2006
C12 PFCA
Molecular mass (g/mol) 614.1 -
Melting point (°C) 112.6 – 114.7 (CCl4 , toluene) Experimental Bernett and Zisman 1959
112.6-114.7 Hare et al. 1954
112-114 Huang et al. 1987
Boiling point (°C) Not available
Vapour pressure (Pa) at 25°C 0.9 to 99.96 kPa (127.6 to 247.7°C) Calculated Kaiser et al. 2005
C13 PFCA
Molecular mass (g/mol) 664.0989 -
Melting point (°C) 117.5-122 Experimental Kunieda and Shinoda 1976
C14 PFCA
Molecular mass (g/mol) 714.12 -
Melting point (°C) 130.4 (hexane) Experimental Lehmler et al.2001
130 Kunieda and Shinoda 1976
C15 PFCA
Molecular mass (g/mol) 764.1129 -
1 It should be noted that these solubility values refer to an aqueous phase containing a mixture of protonated acid and perfluorocarboxylate anion, at an “autogenous” pH. If the pH is reduced by addition of, for example, a mineral acid, the proportion of protonated acid will increase and the overall solubility will decrease.
Abbreviations: Koc, sediment organic carbon coefficient; pKa, acid dissociation constant.

Page details

Date modified: