Rickettsia typhi: Infectious substances pathogen safety data sheet

Section I – Infectious agent

Name

Rickettsia typhi

Agent type

Bacteria

Taxonomy

Family

Rickettsiaceae

Genus

Rickettsia

Species

typhi

Synonym or cross-reference

Also known as Rickettsia mooseriFootnote 1, Murine typhus, endemic typhus, or fleaborne typhusFootnote 2.

Characteristics

Brief description

Rickettsia typhi (R. typhi) are Gram negative, non-motile bacilli measuring 0.5 μm by 0.8-2.0 μm. The single circular genome is 1.1 Mbp long with an average GC content of 28.9%Footnote 3. These obligate intracellular bacteria can be grown in vitro using chicken embryos or in tissue culture cells (e.g., L-929, Vero, MRC5, BHK-21, HEL cells)Footnote 1.  In humans and in animal models, Rickettsia species preferentially target vascular endothelial cellsFootnote 4.

Properties

In flea vectors, R. typhi grows in the midgut epithelial cells and are excreted in fecesFootnote 5. R. typhi is transmitted between vectors through a reservoir (usually rats), or through transovarial transmission to their offspringFootnote 5. In the host, R. typhi targets endothelial cellsFootnote 5Footnote 6. R. typhi adhere to host cells using a rOmpB protein that form intermolecular disulphide only present in Typhus rickettsiaeFootnote 1Footnote 7. R. typhi enter host cells via induced phagocytosis. Once inside the host cell, bacteria escape from the phagosome, invade the cytosol, and replicate by binary fission. R. typhi are released from lysed host cells shortly after host cell invasionFootnote 1Footnote 5. Infection stimulates activation of oxidative mechanisms and other immune responses that lead to symptomsFootnote 6.

Section II – Hazard identification

Pathogenicity and toxicity

R. typhi is the causative agent of murine typhusFootnote 6. Symptoms include abrupt onset of fever with headache, myalgia and malaiseFootnote 8. Macular or maculopapular rash on the trunk and limbs is present in approximately 50% of casesFootnote 8. Anorexia, nausea, vomiting and abdominal pain are often present. The case-fatality rate of murine typhus is less than 4%, and is even lower with appropriate treatmentFootnote 1Footnote 2Footnote 8Footnote 9Footnote 10Footnote 11. Hospitalization occurs in more than 50% of cases and complications occur in approximately 25% of casesFootnote 8Footnote 12Footnote 13. Pulmonary, renal, gastrointestinal, and neurologic complications have been reportedFootnote 8Footnote 13Footnote 14Footnote 15Footnote 16. Rare complications include disseminated intravascular coagulation, splenic rupture, ocular complications, and multi-organ failureFootnote 8Footnote 17. Fever typically resolves 3 days after treatment but can last up to 22 days without treatmentFootnote 8Footnote 13Footnote 18.

Animals do not typically experience clinical signs of disease when infected by R. typhi, as determined by seroprevalence studies in otherwise healthy animalsFootnote 2Footnote 11Footnote 19Footnote 20Footnote 21Footnote 22.

Epidemiology

R. typhi infection occurs worldwide at endemic levelsFootnote 23. Murine typhus is prevalent in tropical and subtropical regions, particularly in dense, urban environmentsFootnote 2. Murine typhus tends to be less severe in childrenFootnote 8Footnote 18Footnote 24. Most cases occur during summer and fall, but seasonal variation is not observed in some regionsFootnote 8. In the United States, cases are likely present along coastal areas with ports where it is maintained among rat reservoirs, with most cases occurring in suburban areas in HawaiiFootnote 25, TexasFootnote 26, and CaliforniaFootnote 2Footnote 18. In these states, less than 100 cases are reported annually, but murine typhus is often underreported due to misdiagnosisFootnote 11Footnote 22. An outbreak of murine typhus occurred in 1982 in Texas with a cluster of five cases reportedFootnote 27.

Disease severity is associated with older age, renal dysfunction, eukocytosis, hypoalbuminemia, nutritional status, quality of supportive care, or the previous usage of sulfa antibioticsFootnote 10Footnote 13Footnote 28.

Host range

Natural host(s)

HumansFootnote 2, dogsFootnote 29.

Other host(s)

R. typhi experimentally introduced in guinea pigs, C3H/HeN mice, and opossums, produces clinical signs of diseaseFootnote 30Footnote 31.

Infectious dose

ID50 in rats is approximately 1 organismFootnote 32.

Incubation period

Can range from 8 to 16 days, averaging 11 daysFootnote 33.

Communicability

R. typhi is transmitted by injection through bites of flea vectors into a host, or contact with flea feces to disrupted skin or mucous membranesFootnote 19. Bacteria are also present in the flea's reproductive organs, enabling transovarial infection to the vector's offspringFootnote 2. Transmission by inhalation is considered likely given that aerosolized forms of R typhi and other Rickettsia spp. have caused disease in laboratory workers and can cause infection in monkeys and guinea pigsFootnote 34Footnote 35Footnote 36Footnote 37Footnote 38.

Section III – Dissemination

Reservoir

Rats are the primary reservoirs in the "urban" transmission cycleFootnote 1. Opossums, cats, and dogs are reservoirs in the "suburban" transmission cycleFootnote 2Footnote 21Footnote 22.

Zoonosis

None.

Vectors

Rat louse "Polyplax spinulosus", rat flea "Xenopsylla cheopis", human flea Pulex irritans, cat flea Ctenocephalides felis, and Leptopsylla segnisFootnote 1Footnote 2Footnote 39.

Section IV – Stability and viability

Drug susceptibility/resistance

Tetracyclines (e.g., doxycycline, minocycline)Footnote 40Footnote 41; macrolides such as josamycin, azithromycin and clarithromycinFootnote 40Footnote 42; rifampinFootnote 40; telithromycinFootnote 43; chloramphenicolFootnote 44; thiamphenicolFootnote 40; fluoroquinolones (ciprofloxacin, ofloxacin, pefloxacin)Footnote 40 and erythromycinFootnote 40 are effective against R. typhi.

Rifampin resistant isolates have been reportedFootnote 45. Some groups of antibiotics, including β-lactams, aminoglycosides and co-trimoxazole are not effective at all for treatment of RickettsiaeFootnote 5.

Susceptibility to disinfectants

Rickettsiae are susceptible to 1% sodium hypochlorite, 70% ethanol, 2% glutaraldehyde, 0.1% formalin, AVL buffer, 0.125% β-propiolactone, and quaternary ammonium compoundsFootnote 46Footnote 47.

Physical inactivation

Moist heat (121°C for 15 minutes) and dry heat (170°C for 1 hour) are effective against bacteria such as R. typhiFootnote 46Footnote 48. Heat at 56oC for 5 minutes is effective against RickettsiaeFootnote 47.

Survival outside host

Rickettsiae rely on host cells for survival and replication, therefore they are unable to survive for a long period of time outside the hostFootnote 49. However, R. typhi in dried flea feces can survive for up to 40 days at room temperatureFootnote 50.

Section V – First aid/medical

Surveillance

Diagnosis is accomplished through the monitoring of clinical symptoms. Serological tests (e.g., indirect immunofluorescence assay, indirect immunoperoxidase assay, latex agglutination, ELISA) can be used to detect typhus group RickettsiaeFootnote 51Footnote 52Footnote 53Footnote 54. Indirect immunofluorescence assay is the gold standardFootnote 2Footnote 18. Serological tests lack the specificity to distinguish individual Rickettsia species. Paired blood samples are required (acute and convalescent phase) and seroconversion is usually detected 7 to 15 days after disease onset, which limits the utility of these tests for making timely clinical decisionsFootnote 18. PCR analysis of blood samples and tissue biopsies has been used to detect R. typhi by amplifying genes specific to R. typhiFootnote 55Footnote 56Footnote 57. Immunostaining methods are also used to detect Rickettsiae in infected cells under microscope, however, this method also lacks the specificity to distinguish between speciesFootnote 58.

Note: The specific recommendations for surveillance in the laboratory should come from the medical surveillance program, which is based on a local risk assessment of the pathogens and activities being undertaken, as well as an overarching risk assessment of the biosafety program as a whole. More information on medical surveillance is available in the Canadian Biosafety Handbook (CBH).

First aid/treatment

Murine typhus can be treated with appropriate antibiotics. Doxycycline alone (200 mg daily) or in combination with a fluoroquinolone antibiotic is commonly administeredFootnote 2Footnote 8Footnote 41Footnote 44. Timely diagnosis and treatment tend to improve patient outcomesFootnote 10. The usual duration of treatment is 3-7 daysFootnote 2Footnote 41. However, doxycycline is not recommended for pregnant women. Chloramphenicol has been used as a treatment during pregnancy, however there is risk of aplastic anemiaFootnote 2Footnote 59. Other treatments including macrolides (i.e. azithromycin) are safer alternatives, however, is less efficacious than doxycyclineFootnote 60.

Dogs who clinically present with R. typhi infection are treated with doxycyclineFootnote 29.

Note: The specific recommendations for first aid/treatment in the laboratory should come from the post-exposure response plan, which is developed as part of the medical surveillance program. More information on the post-exposure response plan can be found in the CBH.

Immunization

No vaccine currently available.

Note: More information on the medical surveillance program can be found in the CBH, and by consulting the Canadian Immunization Guide.

Prophylaxis

None.

Note: More information on prophylaxis as part of the medical surveillance program can be found in the CBH.

Section VI – Laboratory hazard

Laboratory-acquired infections

Sixty-eight cases of murine typhus associated with laboratory exposures were reported prior to 1974Footnote 61. From 1979 to 2004, there were 12 reported laboratory-acquired infections associated with typhus group RickettsiaeFootnote 62. One case of murine typhus occurred after a solution containing R. typhi splashed into a laboratory worker's eye and lipsFootnote 63. Multiple cases are suspected to be transmitted by aerosolsFootnote 38.

Note: Please consult the Canadian Biosafety Standard (CBS) and CBH for additional details on requirements for reporting exposure incidents. A Canadian biosafety guideline describing notification and reporting procedures is also available.

Sources/specimens

Blood, tissue, and vector specimensFootnote 2.

Primary hazards

Accidental autoinoculation with infectious material, inhalation of infectious aerosols and exposure of mucous membranes are primary hazards associated with exposure to R. typhiFootnote 2Footnote 38.

Special hazards

None.

Section VII – Exposure controls/personal protection

Risk group classification

R. typhi is considered to be a Risk Group 3 Human Pathogen and a Risk Group 3 Animal PathogenFootnote 64.

Containment requirements

Containment Level 3 facilities, equipment, and operational practices outlined in the CBS for work involving infectious or potentially infectious materials, animals, or cultures.

Protective clothing

The applicable Containment Level 3 requirements for personal protective equipment and clothing outlined in the CBS are to be followed. At minimum, use of full body coverage dedicated protective clothing, dedicated protective footwear and/or additional protective footwear, gloves when handling infectious materials or animals, face protection when there is a known or potential risk of exposure to splashes or flying objects, respirators when there is a risk of exposure to infectious aerosols, and an additional layer of protective clothing prior to work with infectious materials or animals.

Note: A local risk assessment will identify the appropriate hand, foot, head, body, eye/face, and respiratory protection, and the personal protective equipment requirements for the containment zone must be documented.

Other precautions

All activities involving open vessels of pathogens are to be performed in a certified biological safety cabinet (BSC) or other appropriate primary containment device. The use of needles, syringes, and other sharp objects to be strictly limited. Additional precautions must be considered with work involving animals or large scale activities.

Section VIII – Handling and storage

Spills

Allow aerosols to settle. Wearing protective clothing, gently cover the spill with absorbent paper towel and apply suitable disinfectant, starting at the perimeter and working towards the centre. Allow sufficient contact time with the disinfectant before clean up (CBH).

Disposal

Regulated materials, as well as all items and waste to be decontaminated at the containment barrier prior to removal from the containment zone, animal room, animal cubicle, or post mortem room. This can be achieved by using decontamination technologies and processes that have been demonstrated to be effective against the infectious material, such as chemical disinfectants, autoclaving, irradiation, incineration, an effluent treatment system, or gaseous decontamination (CBH).

Storage

The applicable Containment Level 3 requirements for storage outlined in the CBS are to be followed. Primary containers of regulated materials removed from the containment zone to be stored in a labelled, leak-proof, impact-resistant secondary container, and kept either in locked storage equipment or within an area with limited access.

An inventory of RG3 pathogens to be maintained and to include:

Section IX – Regulatory and other information

Canadian regulatory information

Controlled activities with R. typhi require a Human Pathogens and Toxins licence issued by the Public Health Agency of Canada (PHAC). R. typhi is a terrestrial animal pathogen in Canada; therefore, importation of R. typhi requires an import permit under the authority of the Health of Animals Regulations (HAR). The PHAC issues a "Pathogen and Toxin Licence document" for both a Human Pathogens and Toxins Act Licence and HAR importation permit.

The following is a non-exhaustive list of applicable designations, regulations, or legislations:

Last file update

October, 2023

Prepared by

Centre for Biosecurity, Public Health Agency of Canada.

Disclaimer

The scientific information, opinions, and recommendations contained in this Pathogen Safety Data Sheet have been developed based on or compiled from trusted sources available at the time of publication. Newly discovered hazards are frequent and this information may not be completely up to date. The Government of Canada accepts no responsibility for the accuracy, sufficiency, or reliability or for any loss or injury resulting from the use of the information.

Persons in Canada are responsible for complying with the relevant laws, including regulations, guidelines and standards applicable to the import, transport, and use of pathogens in Canada set by relevant regulatory authorities, including the Public Health Agency of Canada, Health Canada, Canadian Food Inspection Agency, Environment and Climate Change Canada, and Transport Canada. The risk classification and related regulatory requirements referenced in this Pathogen Safety Data Sheet, such as those found in the Canadian Biosafety Standard, may be incomplete and are specific to the Canadian context. Other jurisdictions will have their own requirements.

Copyright © Public Health Agency of Canada, 2023, Canada

References

Footnote 1

Yu, X. J., and D. H. Walker. 2005. Genus I. Rickettsia, p. 96. G. M. Garrity, D. J. Brenner, N. R. Krieg, and J. T. Staley (eds.), Bergey's Manual of Systematic Bacteriology, Second Edition. Volume Two: The Proteobacteria (Part C). Springer, USA.

Return to first footnote 1 referrer

Footnote 2

Civen, R., and V. Ngo. 2008. Murine typhus: an unrecognized suburban vectorborne disease. Clin. Infect. Dis. 46:913-918.

Return to first footnote 2 referrer

Footnote 3

McLeod, M. P., X. Qin, S. E. Karpathy, J. Gioia, S. K. Highlander, G. E. Fox, T. Z. McNeill, H. Jiang, D. Muzny, L. S. Jacob, A. C. Hawes, E. Sodergren, R. Gill, J. Hume, M. Morgan, G. Fan, A. G. Amin, R. A. Gibbs, C. Hong, X. J. Yu, D. H. Walker, and G. M. Weinstock. 2004. Complete genome sequence of Rickettsia typhi and comparison with sequences of other rickettsiae. J Bacteriol 186:5842-55.

Return to footnote 3 referrer

Footnote 4

Sahni, S. K., and E. Rydkina. 2009. Host-cell interactions with pathogenic Rickettsia species. Future Microbiol. 4:323-339.

Return to footnote 4 referrer

Footnote 5

Liu, D. 2015. Chapter 111 - Rickettsia, p 2043-2056. Tang Y-W, Sussman M, Liu D, Poxton I, Schwartzman J (ed), Molecular Medical Microbiology (Second Edition) doi: Available at https://doi.org/10.1016/B978-0-12-397169-2.00111-6. Academic Press, Boston.

Return to first footnote 5 referrer

Footnote 6

Sahni, A., R. Fang, S. K. Sahni, and D. H. Walker. 2019. Pathogenesis of Rickettsial Diseases: Pathogenic and Immune Mechanisms of an Endotheliotropic Infection. Annu Rev Pathol 14:127-152.

Return to first footnote 6 referrer

Footnote 7

Chan, Y. G., M. M. Cardwell, T. M. Hermanas, T. Uchiyama, and J. J. Martinez. 2009. Rickettsial outer-membrane protein B (rOmpB) mediates bacterial invasion through Ku70 in an actin, c-Cbl, clathrin and caveolin 2-dependent manner. Cell. Microbiol. 11:629-644.

Return to footnote 7 referrer

Footnote 8

Tsioutis, C., M. Zafeiri, A. Avramopoulos, E. Prousali, M. Miligkos, and S. A. Karageorgos. 2017. Clinical and laboratory characteristics, epidemiology, and outcomes of murine typhus: A systematic review. Acta Trop. 166:16-24.

Return to first footnote 8 referrer

Footnote 9

Chang, K., Y. H. Chen, N. Y. Lee, H. C. Lee, C. Y. Lin, J. J. Tsai, P. L. Lu, T. C. Chen, H. C. Hsieh, W. R. Lin, P. C. Lai, C. M. Chang, C. J. Wu, C. H. Lai, and W. C. Ko. 2012. Murine typhus in southern Taiwan during 1992-2009. Am. J. Trop. Med. Hyg. 87:141-147.

Return to footnote 9 referrer

Footnote 10

Dumler, J. S., J. P. Taylor, and D. H. Walker. 1991. Clinical and laboratory features of murine typhus in south Texas, 1980 through 1987. JAMA. 266:1365-1370.

Return to first footnote 10 referrer

Footnote 11

Adjemian, J., S. Parks, K. McElroy, J. Campbell, M. E. Eremeeva, W. L. Nicholson, J. McQuiston, and J. Taylor. 2010. Murine typhus in Austin, Texas, USA, 2008. Emerg. Infect. Dis. 16:412-417.

Return to first footnote 11 referrer

Footnote 12

Afzal, Z., S. Kallumadanda, F. Wang, V. Hemmige, and D. Musher. 2016. Acute febrile illness and complications due to murine typhus, Texas, USA. Emerg Infect Dis. 23:1268.

Return to footnote 12 referrer

Footnote 13

Doppler, J. F., and P. N. Newton. 2020. A systematic review of the untreated mortality of murine typhus. PLoS Negl Trop Dis 14:e0008641.

Return to first footnote 13 referrer

Footnote 14

Masalha, R., H. Merkin-Zaborsky, M. Matar, H. J. Zirkin, I. Wirguin, and Y. O. Herishanu. 1998. Murine typhus presenting as subacute meningoencephalitis. J. Neurol. 245:665-668.

Return to footnote 14 referrer

Footnote 15

Vallejo-Maroto, I., S. Garcia-Morillo, M. B. Wittel, P. Stiefel, M. Miranda, E. Pamies, R. Aparicio, and J. Carneado. 2002. Aseptic meningitis as a delayed neurologic complication of murine typhus. Clin. Microbiol. Infect. 8:826-827.

Return to footnote 15 referrer

Footnote 16

van der Vaart, T. W., P. P. van Thiel, N. P. Juffermans, M. van Vugt, S. E. Geerlings, M. P. Grobusch, and A. Goorhuis. 2014. Severe murine typhus with pulmonary system involvement. Emerg. Infect. Dis. 20:1375-1377.

Return to footnote 16 referrer

Footnote 17

Fergie, J., and K. Purcell. 2004. Spontaneous splenic rupture in a child with murine typhus. Pediatr. Infect. Dis. J. 23:1171-1172.

Return to footnote 17 referrer

Footnote 18

Blanton, L. S., J. S. Dumler, and D. H. Walker. 2015. Rickettsia typhi (Murine Typhus), p. 2221. J. E. Bennett (ed.), Mandell, Douglas, and Bennett's principles and practice of infectious diseases, Eighth ed., . Elsevier/Saunders.

Return to first footnote 18 referrer

Footnote 19

Azad, A. F., S. Radulovic, J. A. Higgins, B. H. Noden, and J. M. Troyer. 1997. Flea-borne rickettsioses: ecologic considerations. Emerg. Infect. Dis. 3:319-327.

Return to first footnote 19 referrer

Footnote 20

Maina, A. N. 2012. Sero-epidemiology and molecular characterization of Rickettsiae infecting humans, selected animals and arthropod vectors in Asembo, western Kenya, 2007-2010. Doctor of Philosophy. Jomo Kenyatta University of Agriculture and Technology, Kenya.

Return to footnote 20 referrer

Footnote 21

Nogueras, M. M., I. Pons, A. Ortuno, J. Miret, J. Pla, J. Castella, and F. Segura. 2013. Molecular detection of Rickettsia typhi in cats and fleas. PLoS One. 8:e71386.

Return to first footnote 21 referrer

Footnote 22

Nogueras, M. M., I. Pons, J. Pla, A. Ortuno, J. Miret, I. Sanfeliu, and F. Segura. 2013. The role of dogs in the eco-epidemiology of Rickettsia typhi, etiological agent of Murine typhus. Vet. Microbiol. 163:97-102.

Return to first footnote 22 referrer

Footnote 23

Blanton, L. S. 2019. The Rickettsioses: A Practical Update. Infectious Disease Clinics of North America 33:213-229.

Return to footnote 23 referrer

Footnote 24

Whiteford, S. F., J. P. Taylor, and J. S. Dumler. 2001. Clinical, laboratory, and epidemiologic features of murine typhus in 97 Texas children. Arch. Pediatr. Adolesc. Med. 155:396-400.

Return to footnote 24 referrer

Footnote 25

Centers for Disease Control and Prevention (CDC). 2003. Murine Typhus — Hawaii, 2002. Morb. Mortal. Weekly Rep. 52:1224-1226.

Return to footnote 25 referrer

Footnote 26

Centers for Disease Control and Prevention (CDC). 2009. Outbreak of Rickettsia typhi Infection — Austin, Texas, 2008. Morb. Mortal. Weekly Rep. 58:1267-1270.

Return to footnote 26 referrer

Footnote 27

Centers for Disease Control and Prevention (CDC). 1983. Outbreak of Murine Typhus -- Texas. Morb Mortal Weekly Rep 32:131-132.

Return to footnote 27 referrer

Footnote 28

Walker, D. H. 1990. The role of host factors in the severity of spotted fever and typhus rickettsioses. Ann. N. Y. Acad. Sci. 590:10-19.

Return to footnote 28 referrer

Footnote 29

Juhasz, N. B., J. M. Wilson, K. N. Haney, M. H. Clark, A. C. Davenport, E. B. Breitschwerdt, and B. A. Qurollo. 2022. Rickettsia typhi infection in a clinically-ill dog from Houston, Texas. Veterinary Parasitology: Regional Studies and Reports 35:100781.

Return to first footnote 29 referrer

Footnote 30

Bechah, Y., C. Capo, J. L. Mege, and D. Raoult. 2008. Rickettsial diseases: from Rickettsia-arthropod relationships to pathophysiology and animal models. Future Microbiol. 3:223-236.

Return to footnote 30 referrer

Footnote 31

Blanton, L. S., B. R. Quade, A. Ramírez-Hernández, N. L. Mendell, A. Villasante-Tezanos, D. H. Bouyer, J. L. VandeBerg, and D. H. Walker. 2022. Experimental Rickettsia typhi Infection in Monodelphis domestica: Implications for Opossums as an Amplifying Host in the Suburban Cycle of Murine Typhus. Am J Trop Med Hyg 107:102-109.

Return to footnote 31 referrer

Footnote 32

Arango-Jaramillo, S., A. Farhang-Azad, and C. L. Wisseman Jr. 1984. Experimental infection with Rickettsia mooseri and antibody response of adult and newborn laboratory rats. Am. J. Trop. Med. Hyg. 33:1017-1025.

Return to footnote 32 referrer

Footnote 33

Walker, D. H., and D. Raoult. 2011. Typhus Group Rickettsioses, p. 329. R. L. Guerrant (ed.), Tropical infectious diseases : principles, pathogens, and practice, Third ed., . Saunders/Elsevier.

Return to footnote 33 referrer

Footnote 34

Walker, D. H. 2003. Principles of the malicious use of infectious agents to create terror: reasons for concern for organisms of the genus Rickettsia. Ann. N. Y. Acad. Sci. 990:739-742.

Return to footnote 34 referrer

Footnote 35

Kenyon, R. H., R. A. Kishimoto, and W. C. Hall. 1979. Exposure of guinea pigs to Rickettsia rickettsii by aerosol, nasal, gastric, and subcutaneous routes and protection afforded by an experimental vaccine. Infection and Immunity. 25(2):580-582.

Return to footnote 35 referrer

Footnote 36

Oster, C. N., D. S. Burke, R. H. Kenyon, M. S. Ascher, P. Harber, and C. E. Pedersen. 1977. Laboratory-acquired Rocky Mountain spotted fever. The hazard of aerosol transmission. The New England Journal of Medicine. 297(16):859-863.

Return to footnote 36 referrer

Footnote 37

Saslaw, S., and H. N. Carlisle. 1966. Aerosol infection of monkeys with Rickettsia rickettsii. Bacteriological Reviews. 30(3):636-645.

Return to footnote 37 referrer

Footnote 38

Blacksell, S. D., M. T. Robinson, P. N. Newton, and N. P. J. Day. 2019. Laboratory-acquired Scrub Typhus and Murine Typhus Infections: The Argument for a Risk-based Approach to Biosafety Requirements for Orientia tsutsugamushi and Rickettsia typhi Laboratory Activities. Clin Infect Dis 68:1413-1419.

Return to first footnote 38 referrer

Footnote 39

Azad, A. F. 1990. Epidemiology of murine typhus. Annu. Rev. Entomol. 35:553-569.

Return to footnote 39 referrer

Footnote 40

Rolain, J. M., M. Maurin, G. Vestris, and D. Raoult. 1998. In vitro susceptibilities of 27 rickettsiae to 13 antimicrobials. Antimicrob. Agents Chemother. 42:1537-1541.

Return to first footnote 40 referrer

Footnote 41

Blanton, L. S., and D. H. Walker. 2016. Treatment of Tropical and Travel Related Rickettsioses. Current Treatment Options in Infectious Diseases. 8:42-56.

Return to first footnote 41 referrer

Footnote 42

Keysary, A., A. Itzhaki, E. Rubinstein, C. Oron, and G. Keren. 1996. The in-vitro anti-rickettsial activity of macrolides. J. Antimicrob. Chemother. 38:727-731.

Return to footnote 42 referrer

Footnote 43

Rolain, J. M., M. Maurin, A. Bryskier, and D. Raoult. 2000. In vitro activities of telithromycin (HMR 3647) against Rickettsia rickettsii, Rickettsia conorii, Rickettsia africae, Rickettsia typhi, Rickettsia prowazekii, Coxiella burnetii, Bartonella henselae, Bartonella quintana, Bartonella bacilliformis, and Ehrlichia chaffeensis. Antimicrob. Agents Chemother. 44:1391-1393.

Return to footnote 43 referrer

Footnote 44

Gikas, A., S. Doukakis, J. Pediaditis, S. Kastanakis, A. Manios, and Y. Tselentis. 2004. Comparison of the effectiveness of five different antibiotic regimens on infection with Rickettsia typhi: therapeutic data from 87 cases. Am. J. Trop. Med. Hyg. 70:576-579.

Return to first footnote 44 referrer

Footnote 45

Troyer, J. M., S. Radulovic, S. G. Andersson, and A. F. Azad. 1998. Detection of point mutations in rpoB gene of rifampin-resistant Rickettsia typhi. Antimicrob. Agents Chemother. 42:1845-1846.

Return to footnote 45 referrer

Footnote 46

Narang, R. 2016. Biology of Orientia tsutsugamushi, p. 385. S. Thomas (ed.), Rickettsiales: Biology, Molecular Biology, Epidemiology, and Vaccine Development. Springer, Cham, Switzerland.

Return to first footnote 46 referrer

Footnote 47

Frickmann, H., and G. Dobler. 2013. Inactivation of rickettsiae. Eur J Microbiol Immunol (Bp) 3:188-93.

Return to first footnote 47 referrer

Footnote 48

Hancock, C. O. 2013. Heat Sterilization, p. 277-293. A. P. Fraise, P. A. Lambert, and J. Y. Maillard (eds.), Russell, Hugo & Ayliffe's: Principles and Practice of Disinfection, Preservation and Sterilization, Fifth Edition. Wiley-Blackwell.

Return to footnote 48 referrer

Footnote 49

Helminiak, L., S. Mishra, and H. K. Kim. 2022. Pathogenicity and virulence of Rickettsia. Virulence 13:1752-1771.

Return to footnote 49 referrer

Footnote 50

Mitscherlich, E., and E. H. Marth. 1984. Rickettsia typhi, p. 327. Anonymous Microbial survival in the environment : bacteria and rickettsiae important in human and animal health. Springer-Verlag, Berlin; New York.

Return to footnote 50 referrer

Footnote 51

Ong, A. K., P. A. Tambyah, S. Ooi, G. Kumarasinghe, and C. Chow. 2001. Endemic typhus in Singapore--a re-emerging infectious disease? Singapore Med. J. 42:549-552.

Return to footnote 51 referrer

Footnote 52

Kelly, D. J., C. T. Chan, H. Paxton, K. Thompson, R. Howard, and G. A. Dasch. 1995. Comparative evaluation of a commercial enzyme immunoassay for the detection of human antibody to Rickettsia typhi. Clin. Diagn. Lab. Immunol. 2:356-360.

Return to footnote 52 referrer

Footnote 53

Hechemy, K. E., J. V. Osterman, C. S. Eisemann, L. B. Elliott, and S. J. Sasowski. 1981. Detection of typhus antibodies by latex agglutination. J. Clin. Microbiol. 13:214-216.

Return to footnote 53 referrer

Footnote 54

Silpapojakul, K., J. Pradutkanchana, S. Pradutkanchana, and D. J. Kelly. 1995. Rapid, simple serodiagnosis of murine typhus. Trans. R. Soc. Trop. Med. Hyg. 89:625-628.

Return to footnote 54 referrer

Footnote 55

Papp, S., J. Rauch, S. Kuehl, U. Richardt, C. Keller, and A. Osterloh. 2017. Comparative evaluation of two Rickettsia typhi-specific quantitative real-time PCRs for research and diagnostic purposes. Med. Microbiol. Immunol. 206:41-51.

Return to footnote 55 referrer

Footnote 56

Renvoise, A., J. M. Rolain, C. Socolovschi, and D. Raoult. 2012. Widespread use of real-time PCR for rickettsial diagnosis. FEMS Immunol. Med. Microbiol. 64:126-129.

Return to footnote 56 referrer

Footnote 57

Zimmerman, M. D., D. R. Murdoch, P. J. Rozmajzl, B. Basnyat, C. W. Woods, A. L. Richards, R. H. Belbase, D. A. Hammer, T. P. Anderson, and L. B. Reller. 2008. Murine Typhus and Febrile Illness, Nepal. Emerg. Infect. Dis. 14:1656-1659.

Return to footnote 57 referrer

Footnote 58

Portillo, A., R. de Sousa, S. Santibáñez, A. Duarte, S. Edouard, I. P. Fonseca, C. Marques, M. Novakova, A. M. Palomar, M. Santos, C. Silaghi, L. Tomassone, S. Zúquete, and J. A. Oteo. 2017. Guidelines for the Detection of Rickettsia spp. Vector-Borne and Zoonotic Diseases 17:23-32.

Return to footnote 58 referrer

Footnote 59

Thomseth, V., V. Cejvanovic, E. Jimenez-Solem, K. M. Petersen, H. E. Poulsen, and J. T. Andersen. 2015. Exposure to topical chloramphenicol during pregnancy and the risk of congenital malformations: a Danish nationwide cohort study. Acta Ophthalmol 93:651-3.

Return to footnote 59 referrer

Footnote 60

Newton, P. N., V. Keolouangkhot, S. J. Lee, K. Choumlivong, S. Sisouphone, K. Choumlivong, M. Vongsouvath, M. Mayxay, V. Chansamouth, V. Davong, K. Phommasone, J. Sirisouk, S. D. Blacksell, P. Nawtaisong, C. E. Moore, J. Castonguay-Vanier, S. Dittrich, S. Rattanavong, K. Chang, C. Darasavath, O. Rattanavong, D. H. Paris, and R. Phetsouvanh. 2019. A Prospective, Open-label, Randomized Trial of Doxycycline Versus Azithromycin for the Treatment of Uncomplicated Murine Typhus. Clin Infect Dis 68:738-747.

Return to footnote 60 referrer

Footnote 61

Pike, R. M. 1976. Laboratory-associated infections: summary and analysis of 3921 cases. Health Lab. Sci. 13:105-114.

Return to footnote 61 referrer

Footnote 62

Harding, A. L., and K. B. Byers. 2006. Epidemiology of Laboratory-Associated Infections, p. 53. D. O. Fleming (ed.), Biological safety : principles and practices. ASM Press.

Return to footnote 62 referrer

Footnote 63

Norazah, A., A. Mazlah, Y. M. Cheong, and A. G. Kamel. 1995. Laboratory acquired murine typhus--a case report. Med. J. Malaysia. 50:177-179.

Return to footnote 63 referrer

Footnote 64

Public Health Agency of Canada. 2015. Human Pathogens and Toxins Act (HPTA). 2016:.

Return to footnote 64 referrer

Page details

Date modified: