Haemophilus influenzae: Infectious substances pathogen safety data sheet
Section I – Infectious agent
Name
Haemophilus influenzae
Agent type
Bacteria
Taxonomy
Family
Pasteurellaceae
Genus
Haemophilus
Species
Influenzae
Synonym or cross-reference
Pfeiffer’s bacillus, Bacterium influenzae, Coccobacillus pfeifferi, and Haemophilus meningitisFootnote 1Footnote 2.
Characteristics
Brief description
H. influenzaeis a Gram-negative, coccobacillus or rod-shaped bacterium measuring 0.3-0.5 μm by 0.5-3.0 μmFootnote 3. Its genome is approximately 1.9 MbFootnote 3Footnote 4. H. influenzae are non-motile, facultative anaerobes that require factor X (hemin) and factor V (NAD) to growFootnote 3. There are 8 biovars (I-VIII), defined based on indole, urease, and ornithine decarboxylase activityFootnote 5. Some strains produce a polysaccharide capsule and can be further classified into one of six serovars (a to f). Strains without capsules are referred to as non-typeable H. influenzae (NTHi).
Properties
H. influenzae is a commensal bacterium, but several biogroups, including H. influenzae biogroup aegyptius, can also cause disease in humansFootnote 3. Both encapsulated and NTHi strains can cause invasive disease at normally sterile sites where H. influenzaeis not isolated from healthy individualsFootnote 6Footnote 7.H. influenzae can enter the bloodstream and disseminate to other sites of the bodyFootnote 8. H. influenzae serotype b (Hib) is the most virulentFootnote 9.
Section II – Hazard identification
Pathogenicity and toxicity
H. influenzae is a common commensal bacterium of the upper respiratory tract, but it can also cause localized (e.g., infections of the upper and lower respiratory tract, paranasal sinuses, middle ears, conjunctivae, skin) or invasive disease (e.g., meningitis, septicemia, epiglottitis, pneumonia, pericarditis, septic arthritis)Footnote 3Footnote 6Footnote 7.
H. influenzae-associated meningitis affects young children more frequently than adultsFootnote 10. Symptoms include headache, fever, nausea, vomiting, neck stiffness, and altered mental statusFootnote 11. The case-fatality rate is approximately 4%, even with treatmentFootnote 10. Neurologic sequelae, including hearing loss and learning/behavioural deficiencies, affect up to 25% of survivorsFootnote 12Footnote 13Footnote 14 . Hib is more commonly associated with meningitis in children, whereas NTHi is more commonly associated with meningitis in adultsFootnote 10. Non-type b capsulated H. influenzae also cause meningitisFootnote 10Footnote 15.
Acute epiglottitis infection is associated with capsulated H. influenzae , and is characterized by inflammation of the epiglottisFootnote 10Footnote 15Footnote 16. Symptoms include fever, difficulty breathing, sore throat, and drooling and can progress rapidly to fatal airway obstruction in some casesFootnote 16Footnote 17. The case-fatality rate is approximately 3%Footnote 10.
H. influenzae-associated cellulitis affects children and adultsFootnote 10. Signs and symptoms include fever, malaise, tenderness and discolouration of the skin (usually the face or neck)Footnote 18Footnote 19 . The case-fatality rate is less than 2%Footnote 10.
Acute otitis media primarily affects children and is characterized by inflammation and accumulation of fluid in the middle earFootnote 8Footnote 20. Signs and symptoms include fever, ear pain, and in some cases discharge from the earFootnote 8Footnote 20. NTHi causes 25-35% of acute otitis media casesFootnote 21. Approximately 10% of children are prone to recurrent otitis media infectionsFootnote 8.
NTHi, Hib, and non-type b capsulated H. influenzae-associated pneumonia affects children and adultsFootnote 10Footnote 22. Symptoms include fever, cough, and purulent sputumFootnote 23. NTHi is highly associated with pneumonia in adults over 65 years of ageFootnote 10. The case-fatality rate is 5% and 15% for Hib and NTHi-associated pneumonia, respectivelyFootnote 10. In adults, H. influenzae is also associated with acute exacerbations of chronic obstructive pulmonary diseaseFootnote 24.
H. influenzae is occasionally associated with osteomyelitisFootnote 8, infective endocarditisFootnote 25, and urethritisFootnote 26. Invasive NTHi infection has been associated with early pregnancy lossFootnote 27.
Epidemiology
Up to 70% of healthy children harbour H. influenzae in their nasopharynx; NTHi strains being the most commonly isolatedFootnote 3Footnote 28. Adults have a carriage rate of 1 to 7%Footnote 3Footnote 29. Prior to 1980, Hib was a common cause of invasive disease (e.g., meningitis, pneumonia, epiglottitis, septicaemia, cellulitis) in children globallyFootnote 30. Widespread use of pediatric Hib vaccines has reduced global incidence of Hib invasive disease and deaths by 90% between 2000 and 2015Footnote 31. In 2015, estimated Hib-associated global cases and deaths in children were 975,000 and 29,800, respectivelyFootnote 31. Incidence of Hib-associated disease in children in the Western Pacific, Southeast Asia, and Africa are estimated to be 317,238 and 75 cases per 100,000 population, respectivelyFootnote 31.
As a result of Hib vaccination, NTHi (72-78%) and non-type b serotypes are responsible for an increasing proportion of invasive H. influenzae diseases in developed countriesFootnote 6Footnote 32Footnote 33 . Incidence of invasive H. influenzae disease in Europe, the United States, and Canada is 0.6 - 1.9 cases per 100,000 people, with the highest incidence among adults over 65 years of age (6.3 per 100,000 population) and children less than 1 year old (8.45 per 100,000 population)Footnote 6Footnote 32Footnote 34. Outbreaks of non-Hib serotype and NTHi-associated disease in care facilities have been reportedFootnote 35Footnote 36 .
An estimated five million acute otitis media cases occur annually in children in the United StatesFootnote 37. Approximately one third of acute otitis media cases are caused by NTHiFootnote 21.
Individuals with human immunodeficiency virus (HIV)Footnote 38, immunoglobulin deficienciesFootnote 39Footnote 40 , cystic fibrosisFootnote 41, splenectomyFootnote 42, and sickle cell diseaseFootnote 43Footnote 44Footnote 45 are more susceptible to invasive H. influenzae infection. Individuals with skull trauma or cerebrospinal fluid (CSF) leaks are at greater risk for H. influenzae meningitisFootnote 46Footnote 47 . Adults over 65 years of age and children less than 1 year old are more susceptible to H. influenzae infectionFootnote 6Footnote 32.
Host range
Natural host(s)
Humans are the only natural host of H. influenzaeFootnote 3.
Other host(s)
Rodents (e.g., chinchillas) have been experimentally infectedFootnote 48.
Infectious dose
Unknown.
Incubation period
Incubation period is unknown but is probably between 2-4 days for HibFootnote 49.
Communicability
H. influenzae is transmitted among individuals with close contact, such as members of the same household or in daycare settingsFootnote 50Footnote 51Footnote 52Footnote 53 , via inhalation of respiratory droplets or direct contact with respiratory secretionsFootnote 54. Disease is not communicable 48 hours after initiation of effective antibiotic treatmentFootnote 55.
Section III – Dissemination
Reservoir
Humans.
Zoonosis
None.
Vectors
None.
Section IV – Stability and viability
Drug susceptibility/resistance
H. influenzae is susceptible to cephalosporins (e.g., cefotaximeFootnote 56, ceftazidimeFootnote 56, cefepimeFootnote 57, ceftobiproleFootnote 58, cefditorenFootnote 59, ceftarolineFootnote 60Footnote 61); carbapenems (e.g., meropenemFootnote 56); chloramphenicolFootnote 57; quinolones (e.g., ciprofloxacinFootnote 56, delafloxacinFootnote 62, moxifloxacinFootnote 62, levonadifloxacinFootnote 63); omadacyclineFootnote 64; tigecyclineFootnote 65Footnote 66 ; eravacyclineFootnote 67; hexylresorcinolFootnote 68; and LefamulinFootnote 69.
H. influenzae antimicrobial resistance profiles vary geographicallyFootnote 70. H. influenzae is generally not susceptible to macrolidesFootnote 57. H. influenzae resistance to β-lactam (e.g., ampicillin, amoxicillin) antibiotics is prevalent globally, ranging from 17% to 31% in North America and up to 60% in some parts of AsiaFootnote 57Footnote 61Footnote 70Footnote 71Footnote 72Footnote 73. Some β-lactam-resistant H. influenzae strains produce β-lactamase; others are β-lactamase-negative ampicillin-resistantFootnote 57Footnote 71Footnote 74. Resistance of some β-lactamase-producing strains can be overcome by treatments that use a β-lactam antibiotic in combination with a β-lactamase inhibitor (e.g., amoxicillin/clavulanate, ampicillin/sulbactam, piperacillin/tazobactam)Footnote 5.
Trimethoprim/sulfamethoxazole-resistance is prevalent in all regions, ranging from 14% to 30% in North America and 70% in parts of AsiaFootnote 57Footnote 70Footnote 72. Quinolone-resistant H. influenzae strains have been describedFootnote 4Footnote 71Footnote 73. Chloramphenicol or cephalosporin (e.g., cefaclor) resistance is observed occasionallyFootnote 57Footnote 70Footnote 73Footnote 75.
Multidrug resistant H. influenzae strains (ampicillin, chloramphenicol, trimethoprim/sulfamethoxazole) and extensively drug resistant strains (ampicillin, amoxicillin/clavulanate, cefuroxime, levofloxacin, trimethoprim/sulfamethoxazole) have been described in parts of AsiaFootnote 71Footnote 73Footnote 76.
Susceptibility to disinfectants
Chloramine-T, sodium hypochlorite, povidone-iodine, glutaraldehyde (2%), chlorhexidine, peracetic acid (0.35%), and ethanol (70%) are effective against Haemophilus speciesFootnote 77Footnote 78.
Physical inactivation
UV irradiationFootnote 79Footnote 80 , dry heat treatment (170°C for 1 hour) and moist heat treatment (121°C for 15 minutes) are effective at inactivating Haemophilus speciesFootnote 81.
Survival outside host
Hib in nasal secretions persists on surfaces (e.g., wood, textiles) for approximately 12 hoursFootnote 82Footnote 83 .
Section V – First aid/medical
Surveillance
Monitor for symptoms. Diagnosis is usually confirmed by culture and/or PCRFootnote 5Footnote 84Footnote 85 . Commercial biochemical identification systems can also be used to identify H. influenzaeFootnote 5Footnote 86.
Note: The specific recommendations for surveillance in the laboratory should come from the medical surveillance program, which is based on a local risk assessment of the pathogens and activities being undertaken, as well as an overarching risk assessment of the biosafety program as a whole. More information on medical surveillance is available in the Canadian Biosafety Handbook (CBH).
First aid/treatment
H. influenzae infections can be treated with appropriate antibioticsFootnote 54. If airways are blocked, more invasive procedures may be necessary.
Note: The specific recommendations for first aid/treatment in the laboratory should come from the post-exposure response plan, which is developed as part of the medical surveillance program. More information on the post-exposure response plan can be found in the CBH .
Immunization
Polyribosylribitol phosphate (PRP) vaccines for Hib disease are used in most countries to immunize infants and toddlersFootnote 31. Vaccine formulations for NTHi are currently in phase 2 clinical trials for adults with chronic obstructive pulmonary diseaseFootnote 24Footnote 87. Inclusion of H. influenzae-derived protein D in pneumococcal conjugate vaccines resulted in up to 35% reduction of NTHi-associated acute otitis mediaFootnote 88Footnote 89 . A more efficacious vaccine for NTHi-induced otitis media in children is an active area of researchFootnote 48Footnote 90.
Note: More information on the medical surveillance program can be found in the CBH, and by consulting the Canadian Immunization Guide.
Prophylaxis
Rifampin may be recommended for non-immunized or immunocompromised direct contacts of individuals with Hib diseaseFootnote 54.
Note: More information on prophylaxis as part of the medical surveillance program can be found in the CBH .
Section VI – Laboratory hazard
Laboratory-acquired infections
Five H. influenzae-associated laboratory acquired infections were reported prior to 1982Footnote 91Footnote 92 . One technician developed H. influenzae-associated conjunctivitis after infectious material splashed into his eyeFootnote 91.
Note: Please consult the Canadian Biosafety Standard (CBS) and CBH for additional details on requirements for reporting exposure incidents. A Canadian biosafety guideline describing notification and reporting procedures is also available.
Sources/specimens
Blood, cerebrospinal fluid, sputum, middle ear fluid, urine.
Primary hazards
Autoinoculation with infectious material and exposure of mucous membranes/skin to infectious material.
Special hazards
None.
Section VII – Exposure controls/personal protection
Risk group classification
H. influenzae is a Risk Group (RG) 2 human pathogen and RG1 animal pathogenFootnote 93Footnote 94. H. influenzae subsp. murium is a RG1 human pathogen and RG2 animal pathogenFootnote 93.
Containment requirements
Containment Level 2 facilities, equipment, and operational practices outlined in the CBS for work involving infectious or potentially infectious materials, animals, or cultures.
Protective clothing
The applicable Containment Level 2 requirements for personal protective equipment and clothing outlined in the CBS are to be followed. The personal protective equipment could include the use of a lab coat and dedicated footwear (e.g., boots, shoes) or additional protective footwear (e.g., boot or shoe covers) where floors may be contaminated (e.g., animal cubicles, PM rooms), gloves when direct skin contact with infected materials or animals is unavoidable, and eye protection where there is a known or potential risk of exposure to splashes.
Note: A local risk assessment will identify the appropriate hand, foot, head, body, eye/face, and respiratory protection, and the personal protective equipment requirements for the containment zone and work activities must be documented.
Other precautions
A biological safety cabinet (BSC) or other primary containment devices to be used for activities with open vessels, based on the risks associated with the inherent characteristics of the regulated material, the potential to produce infectious aerosols or aerosolized toxins, the handling of high concentrations of regulated materials, or the handling of large volumes of regulated materials.
Use of needles and syringes to be strictly limited. Bending, shearing, re-capping, or removing needles from syringes to be avoided, and if necessary, performed only as specified in standard operating procedures (SOPs). Additional precautions are required with work involving animals or large-scale activities.
Additional information
For diagnostic laboratories handling primary specimens that may contain H. influenzae, the following resources may be consulted:
Section VIII – Handling and storage
Spills
Allow aerosols to settle. Wearing personal protective equipment, gently cover the spill with absorbent paper towel and apply suitable disinfectant, starting at the perimeter and working towards the centre. Allow sufficient contact time before clean up (CBH).
Disposal
All materials/substances that have come in contact with the regulated materials should be completely decontaminated before they are removed from the containment zone or standard operating procedures (SOPs) to be in place to safely and securely move or transport waste out of the containment zone to a designated decontamination area / third party. This can be achieved by using decontamination technologies and processes that have been demonstrated to be effective against the regulated material, such as chemical disinfectants, autoclaving, irradiation, incineration, an effluent treatment system, or gaseous decontamination (CBH).
Storage
Containment Level 2: The applicable Containment Level 2 requirements for storage outlined in the CBS are to be followed. Primary containers of regulated materials removed from the containment zone to be labelled, leakproof, impact resistant, and kept either in locked storage equipment or within an area with limited access.
Section IX – Regulatory and other information
Canadian regulatory information
Controlled activities with H. influenzae require a Human Pathogens and Toxins licence, issued by the Public Health Agency of CanadaFootnote 94. Invasive H. influenzae disease is a nationally notifiable disease in Canada.
The following is a non-exhaustive list of applicable designations, regulation, or legislation:
- Human Pathogen and Toxins Act and Human Pathogens and Toxins Regulations
- Transportation of Dangerous Goods Regulations
- National notifiable disease (human)
Last file update
2020
Prepared by
Centre for Biosecurity, Public Health Agency of Canada.
Disclaimer
The scientific information, opinions, and recommendations contained in this Pathogen Safety Data Sheet have been developed based on or compiled from trusted sources available at the time of publication. Newly discovered hazards are frequent and this information may not be completely up to date. The Government of Canada accepts no responsibility for the accuracy, sufficiency, or reliability or for any loss or injury resulting from the use of the information.
Persons in Canada are responsible for complying with the relevant laws, including regulations, guidelines and standards applicable to the import, transport, and use of pathogens in Canada set by relevant regulatory authorities, including the Public Health Agency of Canada, Health Canada, Canadian Food Inspection Agency, Environment and Climate Change Canada, and Transport Canada. The risk classification and related regulatory requirements referenced in this Pathogen Safety Data Sheet, such as those found in the Canadian Biosafety Standard, may be incomplete and are specific to the Canadian context. Other jurisdictions will have their own requirements.
Copyright © Public Health Agency of Canada, 2023, Canada
References
- Footnote 1
-
National Center for Biotechnology Information. Taxonomy Browser. NCBI:txid727. Haemophilus Influenzae. 2020:.
- Footnote 2
-
Lindsay, J. W., E. C. Rice, and M. A. Selinger. 1940. The treatment of meningitis due to Hemophilus influenzae (Pfeiffer's bacillus): A review of 108 cases. J. Pediatr. 17:220-227.
- Footnote 3
-
Kilian, M. 2005. Genus III. Haemophilus, p. 883. G. Garrity, D. J. Brenner, N. R. Krieg, and J. T. Staley (eds.), Bergey's Manual of Systematic Bacteriology, Second Edition. Volume Two: The Proteobacteria. Part B: The Gammaproteobacteria. Springer.
- Footnote 4
-
Tanaka, E., T. Wajima, H. Nakaminami, and N. Noguchi. 2020. Whole-genome sequence of Haemophilus influenzae ST422 outbreak clone strain 2018-Y40 with low quinolone susceptibility isolated from a paediatric patient. J. Glob. Antimicrob. Resist.
- Footnote 5
-
Ledeboer, N. A., and G. V. Doern. 2015. Haemophilus, p. 667. J. H. Jorgensen and M. A. Pfaller (eds.), Manual of Clinical Microbiology. ASM Press.
- Footnote 6
-
Whittaker, R., A. Economopoulou, J. G. Dias, E. Bancroft, M. Ramliden, L. P. Celentano, and European Centre for Disease Prevention and Control Country Experts for Invasive Haemophilus influenzae Disease. 2017. Epidemiology of Invasive Haemophilus influenzae Disease, Europe, 2007-2014. Emerg. Infect. Dis. 23:396-404.
- Footnote 7
-
Government of Canada. 2009. Case Definitions for Communicable Diseases under National Surveillance - 2009. Haemophilus influenzae non-b, Invasive Disease. 2020:.
- Footnote 8
-
Agrawal, A., and T. F. Murphy. 2011. Haemophilus influenzae infections in the H. influenzae type b conjugate vaccine era. J. Clin. Microbiol. 49:3728-3732.
- Footnote 9
-
Zwahlen, A., J. S. Kroll, L. G. Rubin, and E. R. Moxon. 1989. The molecular basis of pathogenicity in Haemophilus influenzae: comparative virulence of genetically-related capsular transformants and correlation with changes at the capsulation locus cap. Microb. Pathog. 7:225-235.
- Footnote 10
-
Ladhani, S., M. P. Slack, P. T. Heath, A. von Gottberg, M. Chandra, M. E. Ramsay, and European Union Invasive Bacterial Infection Surveillance participants. 2010. Invasive Haemophilus influenzae Disease, Europe, 1996-2006. Emerg. Infect. Dis. 16:455-463.
- Footnote 11
-
Fuentes-Antrás, J., M. Ramírez-Torres, E. Osorio-Martínez, M. Lorente, A. Lorenzo-Almorós, O. Lorenzo, and M. Górgolas. 2019. Acute Community-Acquired Bacterial Meningitis: Update on Clinical Presentation and Prognostic factors. New Microbiol. 41:81-87.
- Footnote 12
-
Taylor, H. G., E. L. Mills, A. Ciampi, R. du Berger, G. V. Watters, R. Gold, N. MacDonald, and R. H. Michaels. 1990. The sequelae of Haemophilus influenzae meningitis in school-age children. N. Engl. J. Med. 323:1657-1663.
- Footnote 13
-
Wenger, J. D. 1998. Epidemiology of Haemophilus influenzae type b disease and impact of Haemophilus influenzae type b conjugate vaccines in the United States and Canada. Pediatr. Infect. Dis. J. 17:S132-6.
- Footnote 14
-
Smith, A. L. 1987. Pathogenesis of Haemophilus influenzae meningitis. Pediatr. Infect. Dis. J. 6:783-786.
- Footnote 15
-
Soeters, H. M., S. E. Oliver, I. D. Plumb, A. E. Blain, T. Zulz, B. C. Simons, M. Barnes, M. M. Farley, L. H. Harrison, R. Lynfield, S. Massay, J. McLaughlin, A. G. Muse, S. Petit, W. Schaffner, A. Thomas, S. Torres, J. Watt, T. Pondo, M. J. Whaley, F. Hu, X. Wang, E. C. Briere, and M. G. Bruce. 2020. Epidemiology of Invasive Haemophilus influenzae Serotype a Disease-United States, 2008-2017. Clin. Infect. Dis.
- Footnote 16
-
Mayo-Smith, M. F., J. W. Spinale, C. J. Donskey, M. Yukawa, R. H. Li, and F. J. Schiffman. 1995. Acute epiglottitis. An 18-year experience in Rhode Island. Chest. 108:1640-1647.
- Footnote 17
-
Law, B. J., D. Draper, E. L. Mills, M. Allard, C. Nijssen-Jordan, R. Bortolossi, N. E. Macdonald, A. A. Al-Twaim, W. Albritton, G. Kasian, L. Rea, S. Cronk, and R. Morris. 1990. Epiglottitis in Canada: A multiregional review. Can. J. Infect. Dis. 1:15-22.
- Footnote 18
-
Landwirth, J. 1977. Bilateral cellulitis of cheeks in an infant due to Hemophilus influenzae. Clin. Pediatr. (Phila). 16:182-184.
- Footnote 19
-
Kroshinsky, D., M. E. Grossman, and L. P. Fox. 2007. Approach to the patient with presumed cellulitis. Semin. Cutan. Med. Surg. 26:168-178.
- Footnote 20
-
Silva, M. D., and S. Sillankorva. 2019. Otitis media pathogens - A life entrapped in biofilm communities. Crit. Rev. Microbiol. 45:595-612.
- Footnote 21
-
Murphy, T. F., H. Faden, L. O. Bakaletz, J. M. Kyd, A. Forsgren, J. Campos, M. Virji, and S. I. Pelton. 2009. Nontypeable Haemophilus influenzae as a pathogen in children. Pediatr. Infect. Dis. J. 28:43-48.
- Footnote 22
-
Slack, M. P. E. 2017. The evidence for non-typeable Haemophilus influenzae as a causative agent of childhood pneumonia. Pneumonia (Nathan). 9:9-017-0033-2. eCollection 2017.
- Footnote 23
-
Forstner, C., G. Rohde, J. Rupp, H. Schuette, S. R. Ott, S. Hagel, N. Harrison, F. Thalhammer, H. von Baum, N. Suttorp, T. Welte, M. W. Pletz, and CAPNETZ Study Group. 2016. Community-acquired Haemophilus influenzae pneumonia--New insights from the CAPNETZ study. J. Infect. 72:554-563.
- Footnote 24
-
Wilkinson, T. M. A., E. Aris, S. C. Bourne, S. C. Clarke, M. Peeters, T. G. Pascal, L. Taddei, A. C. Tuck, V. L. Kim, K. K. Ostridge, K. J. Staples, N. P. Williams, A. P. Williams, S. A. Wootton, and J. M. Devaster. 2019. Drivers of year-to-year variation in exacerbation frequency of COPD: analysis of the AERIS cohort. ERJ Open Res. 5:00248-2018.
- Footnote 25
-
Csukas, S. R., F. Elbl, and G. S. Marshall. 1992. Type b and non-type b Haemophilus influenzae endocarditis. Pediatr. Infect. Dis. J. 11:1053-1056.
- Footnote 27
-
Cevik, M., O. L. Moncayo-Nieto, and M. J. Evans. 2020. Non-typeable Haemophilus influenzae-associated early pregnancy loss: an emerging neonatal and maternal pathogen. Infection. 48:285-288.
- Footnote 28
-
Ortiz-Romero, M. D. M., M. P. Espejo-García, S. Alfayate-Miguelez, F. J. Ruiz-López, D. Zapata-Hernandez, A. J. Gonzalez-Pacanowska, and Collaborators of Study Group of Infectious Diseases in the Child in Cartagena. 2017. Epidemiology of Nasopharyngeal Carriage by Haemophilus influenzae in Healthy Children: A Study in the Mediterranean Coast Region. Pediatr. Infect. Dis. J. 36:919-923.
- Footnote 29
-
Drayß, M., H. Claus, K. Hubert, K. Thiel, A. Berger, A. Sing, M. V. Linden, U. Vogel, and T. T. Lâm. 2019. Asymptomatic carriage of Neisseria meningitidis, Haemophilus influenzae, Streptococcus pneumoniae, Group A Streptococcus and Staphylococcus aureus among adults aged 65 years and older. PLoS One. 14:e0212052.
- Footnote 30
-
Peltola, H. 2000. Worldwide Haemophilus influenzae type b disease at the beginning of the 21st century: global analysis of the disease burden 25 years after the use of the polysaccharide vaccine and a decade after the advent of conjugates. Clin. Microbiol. Rev. 13:302-317.
- Footnote 31
-
Wahl, B., K. L. O'Brien, A. Greenbaum, A. Majumder, L. Liu, Y. Chu, I. Lukšić, H. Nair, D. A. McAllister, H. Campbell, I. Rudan, R. Black, and M. D. Knoll. 2018. Burden of Streptococcus pneumoniae and Haemophilus influenzae type b disease in children in the era of conjugate vaccines: global, regional, and national estimates for 2000-15. Lancet Glob. Health. 6:e744-e757.
- Footnote 32
-
Soeters, H. M., A. Blain, T. Pondo, B. Doman, M. M. Farley, L. H. Harrison, R. Lynfield, L. Miller, S. Petit, A. Reingold, W. Schaffner, A. Thomas, S. M. Zansky, X. Wang, and E. C. Briere. 2018. Current Epidemiology and Trends in Invasive Haemophilus influenzae Disease-United States, 2009-2015. Clin. Infect. Dis. 67:881-889.
- Footnote 33
-
Cerqueira, A., S. Byce, R. S. W. Tsang, F. B. Jamieson, J. V. Kus, and M. Ulanova. 2019. Continuing surveillance of invasive Haemophilus influenzae disease in northwestern Ontario emphasizes the importance of serotype a and non-typeable strains as causes of serious disease: a Canadian Immunization Research Network (CIRN) Study. Can. J. Microbiol. 65:805-813.
- Footnote 34
-
Public Health Agency of Canada. 2017. Notifiable Disease Pre-Built Charts. Disease over time, 1924-2017. 2020:.
- Footnote 35
-
Van, D. M., C. Walden, E. S. Walker, S. A. Reynolds, F. Levy, and F. A. Sarubbi. 2007. An outbreak of infections caused by non-typeable Haemophilus influenzae in an extended care facility. J. Hosp. Infect. 66:59-64.
- Footnote 36
-
Miyahara, R., M. Suzuki, K. Morimoto, B. Chang, S. Yoshida, S. Yoshinaga, M. Kitamura, M. Chikamori, K. Oishi, T. Kitamura, and M. Ishida. 2018. Nosocomial Outbreak of Upper Respiratory Tract Infection With β-Lactamase-Negative Ampicillin-Resistant Nontypeable Haemophilus influenzae. Infect. Control Hosp. Epidemiol. 39:652-659.
- Footnote 37
-
Kaur, R., M. Morris, and M. E. Pichichero. 2017. Epidemiology of Acute Otitis Media in the Postpneumococcal Conjugate Vaccine Era. Pediatrics. 140:e20170181.
- Footnote 38
-
Steinhart, R., A. L. Reingold, F. Taylor, G. Anderson, and J. D. Wenger. 1992. Invasive Haemophilus influenzae infections in men with HIV infection. JAMA. 268:3350-3352.
- Footnote 39
-
Fieschi, C., M. Malphettes, L. Galicier, and E. Oksenhendler. 2006. Adult-onset primary hypogammaglobulinemia. Presse Med. 35:887-894.
- Footnote 40
-
Martinot, M., L. Oswald, E. Parisi, E. Etienne, N. Argy, I. Grawey, D. De Briel, M. M. Zadeh, L. Federici, G. Blaison, C. Koebel, B. Jaulhac, Y. Hansmann, and D. Christmann. 2014. Immunoglobulin deficiency in patients with Streptococcus pneumoniae or Haemophilus influenzae invasive infections. Int. J. Infect. Dis. 19:79-84.
- Footnote 41
-
Cardines, R., M. Giufrè, A. Pompilio, E. Fiscarelli, G. Ricciotti, G. Di Bonaventura, and M. Cerquetti. 2012. Haemophilus influenzae in children with cystic fibrosis: antimicrobial susceptibility, molecular epidemiology, distribution of adhesins and biofilm formation. Int. J. Med. Microbiol. 302:45-52.
- Footnote 42
-
Konradsen, H. B., C. Rasmussen, P. Ejstrud, and J. B. Hansen. 1997. Antibody levels against Streptococcus pneumoniae and Haemophilus influenzae type b in a population of splenectomized individuals with varying vaccination status. Epidemiol. Infect. 119:167-174.
- Footnote 43
-
Battersby, A. J., H. H. Knox-Macaulay, and E. D. Carrol. 2010. Susceptibility to invasive bacterial infections in children with sickle cell disease. Pediatr. Blood Cancer. 55:401-406.
- Footnote 44
-
Williams, T. N., S. Uyoga, A. Macharia, C. Ndila, C. F. McAuley, D. H. Opi, S. Mwarumba, J. Makani, A. Komba, M. N. Ndiritu, S. K. Sharif, K. Marsh, J. A. Berkley, and J. A. Scott. 2009. Bacteraemia in Kenyan children with sickle-cell anaemia: a retrospective cohort and case-control study. Lancet. 374:1364-1370.
- Footnote 45
-
Pearson, H. A. 1977. Sickle cell anemia and severe infections due to encapsulated bacteria. J. Infect. Dis. 136 Suppl:S25-30.
- Footnote 46
-
Spagnuolo, P. J., J. J. Ellner, P. I. Lerner, M. C. McHenry, F. Flatauer, P. Rosenberg, and M. S. Rosenthal. 1982. Haemophilus influenzae meningitis: the spectrum of disease in adults. Medicine (Baltimore). 61:74-85.
- Footnote 47
-
Tang, L. M., S. T. Chen, and Y. R. Wu. 1998. Haemophilus influenzae meningitis in adults. Diagn. Microbiol. Infect. Dis. 32:27-32.
- Footnote 48
-
Whitby, P. W., D. J. Morton, H. J. Mussa, L. Mirea, and T. L. Stull. 2020. A bacterial vaccine polypeptide protective against nontypable Haemophilus influenzae. Vaccine. 38:2960-2970.
- Footnote 49
-
Webber, R. 2005. Communicable disease epidemiology and control: a global perspective (2nd ed.). CABI publishing.
- Footnote 50
-
Watanabe, H., K. Hoshino, R. Sugita, N. Asoh, K. Watanabe, K. Oishi, and T. Nagatake. 2004. Possible high rate of transmission of nontypeable Haemophilus influenzae, including beta-lactamase-negative ampicillin-resistant strains, between children and their parents. J. Clin. Microbiol. 42:362-365.
- Footnote 51
-
Goetz, M. B., H. O'Brien, J. M. Musser, and J. I. Ward. 1994. Nosocomial transmission of disease caused by nontypeable strains of Haemophilus influenzae. Am. J. Med. 96:342-347.
- Footnote 52
-
Loos, B. G., J. M. Bernstein, D. M. Dryja, T. F. Murphy, and D. P. Dickinson. 1989. Determination of the epidemiology and transmission of nontypable Haemophilus influenzae in children with otitis media by comparison of total genomic DNA restriction fingerprints. Infect. Immun. 57:2751-2757.
- Footnote 53
-
Halsey, N. A., C. Korock, T. L. Johansen, and M. P. Glode. 1980. Intralitter transmission of haemophilus influenzae type b in infant rats and rifampin eradication of nasopharyngeal colonization. J. Infect. Dis. 142:739-743.
- Footnote 54
-
U. S. Department of Health and Human Services, and Centers for Disease Control and Prevention. 2014. Prevention and Control ofHaemophilus influenzae Type b Disease. Recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR. Vol. 63/No. 1:.
- Footnote 55
-
Ogle, J. W., G. P. Rabalais, and M. P. Glode. 1986. Duration of pharyngeal carriage of Haemophilus influenzae type b in children hospitalized with systemic infections. Pediatr. Infect. Dis. 5:509-511.
- Footnote 56
-
Powell, M., P. Seetulsingh, and J. D. Williams. 1989. In-vitro susceptibility of Haemophilus influenzae to meropenem compared with imipenem, five other beta-lactams, chloramphenicol and ciprofloxacin. J. Antimicrob. Chemother. 24 Suppl A:175-181.
- Footnote 57
-
Tristram, S., M. R. Jacobs, and P. C. Appelbaum. 2007. Antimicrobial resistance in Haemophilus influenzae. Clin. Microbiol. Rev. 20:368-389.
- Footnote 58
-
Pfaller, M. A., R. K. Flamm, R. E. Mendes, J. M. Streit, J. I. Smart, K. A. Hamed, L. R. Duncan, and H. S. Sader. 2018. Ceftobiprole Activity against Gram-Positive and -Negative Pathogens Collected from the United States in 2006 and 2016. Antimicrob. Agents Chemother. 63:e01566-18.
- Footnote 59
-
Sánchez Artola, B., and J. Barberán. 2017. Cefditoren: a reality for the treatment of community infections. Rev. Esp. Quimioter. 30:407-412.
- Footnote 60
-
Kaushik, D., S. Rathi, and A. Jain. 2011. Ceftaroline: a comprehensive update. Int. J. Antimicrob. Agents. 37:389-395.
- Footnote 61
-
Pfaller, M. A., D. J. Farrell, H. S. Sader, and R. N. Jones. 2012. AWARE Ceftaroline Surveillance Program (2008-2010): trends in resistance patterns among Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis in the United States. Clin. Infect. Dis. 55 Suppl 3:S187-93.
- Footnote 62
-
McCurdy, S., K. Keedy, L. Lawrence, A. Nenninger, A. Sheets, M. Quintas, and S. Cammarata. 2020. Efficacy of Delafloxacin versus Moxifloxacin against Bacterial Respiratory Pathogens in Adults with Community-Acquired Bacterial Pneumonia (CABP): Microbiology Results from the Delafloxacin Phase 3 CABP Trial. Antimicrob. Agents Chemother. 64:e01949-19.
- Footnote 63
-
Bhagwat, S. S., M. Nandanwar, A. Kansagara, A. Patel, S. Takalkar, R. Chavan, H. Periasamy, R. Yeole, P. K. Deshpande, S. Bhavsar, A. Bhatia, J. Ahdal, R. Jain, and M. Patel. 2019. Levonadifloxacin, a Novel Broad-Spectrum Anti-MRSA Benzoquinolizine Quinolone Agent: Review of Current Evidence. Drug Des. Devel. Ther. 13:4351-4365.
- Footnote 64
-
Pfaller, M. A., M. D. Huband, D. Shortridge, and R. K. Flamm. 2020. Surveillance of Omadacycline Activity Tested against Clinical Isolates from the United States and Europe: Report from the SENTRY Antimicrobial Surveillance Program, 2016 to 2018. Antimicrob. Agents Chemother. 64:e02488-19.
- Footnote 65
-
Pfaller, M. A., M. D. Huband, J. M. Streit, R. K. Flamm, and H. S. Sader. 2018. Surveillance of tigecycline activity tested against clinical isolates from a global (North America, Europe, Latin America and Asia-Pacific) collection (2016). Int. J. Antimicrob. Agents. 51:848-853.
- Footnote 66
-
Veeraraghavan, B., A. Poojary, C. Shankar, A. K. Bari, S. Kukreja, B. Thukkaram, R. G. Neethimohan, Y. D. Bakhtavachalam, and S. Kamat. 2019. In-vitro activity of tigecycline and comparator agents against common pathogens: Indian experience. J. Infect. Dev. Ctries. 13:245-250.
- Footnote 67
-
Zhao, C., X. Wang, Y. Zhang, R. Wang, Q. Wang, H. Li, and H. Wang. 2019. In vitro activities of Eravacycline against 336 isolates collected from 2012 to 2016 from 11 teaching hospitals in China. BMC Infect. Dis. 19:508-019-4093-1.
- Footnote 68
-
Matthews, D., O. Adegoke, and A. Shephard. 2020. Bactericidal activity of hexylresorcinol lozenges against oropharyngeal organisms associated with acute sore throat. BMC Res. Notes. 13:99-020-04954-1.
- Footnote 69
-
Lee, Y. R., and K. L. Jacobs. 2019. Leave it to Lefamulin: A Pleuromutilin Treatment Option in Community-Acquired Bacterial Pneumonia. Drugs. 79:1867-1876.
- Footnote 70
-
Hoban, D. J., G. V. Doern, A. C. Fluit, M. Roussel-Delvallez, and R. N. Jones. 2001. Worldwide prevalence of antimicrobial resistance in Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis in the SENTRY Antimicrobial Surveillance Program, 1997-1999. Clin. Infect. Dis. 32 Suppl 2:S81-93.
- Footnote 71
-
Heinz, E. 2018. The return of Pfeiffer's bacillus: Rising incidence of ampicillin resistance in Haemophilus influenzae. Microb. Genom. 4:e000214.
- Footnote 72
-
Wang, H. J., C. Q. Wang, C. Z. Hua, H. Yu, T. Zhang, H. Zhang, S. F. Wang, A. W. Lin, Q. Cao, W. C. Huang, H. L. Deng, S. C. Cao, and X. J. Chen. 2019. Antibiotic Resistance Profiles of Haemophilus influenzae Isolates from Children in 2016: A Multicenter Study in China. Can. J. Infect. Dis. Med. Microbiol. 2019:6456321.
- Footnote 73
-
Su, P. Y., A. H. Huang, C. H. Lai, H. F. Lin, T. M. Lin, and C. H. Ho. 2020. Extensively drug-resistant Haemophilus influenzae - emergence, epidemiology, risk factors, and regimen. BMC Microbiol. 20:102-020-01785-9.
- Footnote 74
-
Kaczmarek, F. S., T. D. Gootz, F. Dib-Hajj, W. Shang, S. Hallowell, and M. Cronan. 2004. Genetic and molecular characterization of beta-lactamase-negative ampicillin-resistant Haemophilus influenzae with unusually high resistance to ampicillin. Antimicrob. Agents Chemother. 48:1630-1639.
- Footnote 75
-
Zhanel, G. G., L. Palatnick, K. A. Nichol, D. E. Low, D. J. Hoban, and CROSS Study Group. 2003. Antimicrobial resistance in Haemophilus influenzae and Moraxella catarrhalis respiratory tract isolates: results of the Canadian Respiratory Organism Susceptibility Study, 1997 to 2002. Antimicrob. Agents Chemother. 47:1875-1881.
- Footnote 76
-
Yamada, S., S. Seyama, T. Wajima, Y. Yuzawa, M. Saito, E. Tanaka, and N. Noguchi. 2020. β-Lactamase-non-producing ampicillin-resistant Haemophilus influenzae is acquiring multidrug resistance. J. Infect. Public. Health. 13:497-501.
- Footnote 77
-
McDonnell, G., and A. D. Russell. 1999. Antiseptics and disinfectants: activity, action, and resistance. Clin. Microbiol. Rev. 12:147-179.
- Footnote 78
-
Rodríguez Ferri, E. F., S. Martínez, R. Frandoloso, S. Yubero, and C. B. Gutiérrez Martín. 2010. Comparative efficacy of several disinfectants in suspension and carrier tests against Haemophilus parasuis serovars 1 and 5. Res. Vet. Sci. 88:385-389.
- Footnote 79
-
Farkas, J. 1998. Irradiation as a method for decontaminating food. A review. Int. J. Food Microbiol. 44:189-204.
- Footnote 80
-
Yin, R., T. Dai, P. Avci, A. E. Jorge, W. C. de Melo, D. Vecchio, Y. Y. Huang, A. Gupta, and M. R. Hamblin. 2013. Light based anti-infectives: ultraviolet C irradiation, photodynamic therapy, blue light, and beyond. Curr. Opin. Pharmacol. 13:731-762.
- Footnote 81
-
Hancock, C. O. 2013. Heat Sterilization, p. 277. A. P. Fraise, J. Y. Mailard, and S. A. Sattar (eds.), Russell, Hugo & Ayliffe’s: Principles and Practice of Disinfection, Preservation and Sterilization, Fifth ed., . Blackwell Publishing Ltd.
- Footnote 82
-
Murphy, T. V., J. F. Clements, M. Petroni, S. Coury, and L. Stetler. 1989. Haemophilus influenzae type b in respiratory secretions. Pediatr. Infect. Dis. J. 8:148-151.
- Footnote 83
-
Mitscherlich, E., and E. H. Marth. 1984. Microbial Survival in the Environment. Springer.
- Footnote 84
-
Albuquerque, R. C., A. C. R. Moreno, S. R. Dos Santos, S. L. B. Ragazzi, and M. B. Martinez. 2019. Multiplex-PCR for diagnosis of bacterial meningitis. Braz J. Microbiol. 50:435-443.
- Footnote 85
-
Hu, L., B. Han, Q. Tong, H. Xiao, and D. Cao. 2020. Detection of Eight Respiratory Bacterial Pathogens Based on Multiplex Real-Time PCR with Fluorescence Melting Curve Analysis. Can. J. Infect. Dis. Med. Microbiol. 2020:2697230.
- Footnote 86
-
Munson, E. L., and G. V. Doern. 2007. Comparison of three commercial test systems for biotyping Haemophilus influenzae and Haemophilus parainfluenzae. J. Clin. Microbiol. 45:4051-4053.
- Footnote 87
-
Van Damme, P., G. Leroux-Roels, C. Vandermeulen, I. De Ryck, A. Tasciotti, M. Dozot, L. Moraschini, M. Testa, and A. K. Arora. 2019. Safety and immunogenicity of non-typeable Haemophilus influenzae-Moraxella catarrhalis vaccine. Vaccine. 37:3113-3122.
- Footnote 88
-
Prymula, R., P. Peeters, V. Chrobok, P. Kriz, E. Novakova, E. Kaliskova, I. Kohl, P. Lommel, J. Poolman, J. P. Prieels, and L. Schuerman. 2006. Pneumococcal capsular polysaccharides conjugated to protein D for prevention of acute otitis media caused by both Streptococcus pneumoniae and non-typable Haemophilus influenzae: a randomised double-blind efficacy study. Lancet. 367:740-748.
- Footnote 89
-
Clarke, C., L. O. Bakaletz, J. Ruiz-Guiñazú, D. Borys, and T. Mrkvan. 2017. Impact of protein D-containing pneumococcal conjugate vaccines on non-typeable Haemophilus influenzae acute otitis media and carriage. Expert Rev. Vaccines. 16:1-14.
- Footnote 90
-
Novotny, L. A., and L. O. Bakaletz. 2020. Transcutaneous immunization with a nontypeable Haemophilus influenzae dual adhesin-directed immunogen induces durable and boostable immunity. Vaccine. 38:2378-2386.
- Footnote 91
-
Jacobson, J. T., R. B. Orlob, and J. L. Clayton. 1985. Infections acquired in clinical laboratories in Utah. J. Clin. Microbiol. 21:486-489.
- Footnote 92
-
Pike, R. M. 1976. Laboratory-associated infections: summary and analysis of 3921 cases. Health Lab. Sci. 13:105-114.
- Footnote 93
-
Public Health Agency of Canada. 2019. ePATHogen - Risk Group Database. 2019:.
- Footnote 94
-
Public Health Agency of Canada. 2019. Human Pathogens and Toxins Act (HPTA) (S.C. 2009, c.24).
[26] Ito, S., K. Hatazaki, K. Shimuta, H. Kondo, K. Mizutani, M. Yasuda, K. Nakane, T. Tsuchiya, S. Yokoi, M. Nakano, M. Ohinishi, and T. Deguchi. 2017. Haemophilus influenzae Isolated From Men With Acute Urethritis: Its Pathogenic Roles, Responses to Antimicrobial Chemotherapies, and Antimicrobial Susceptibilities. Sex. Transm. Dis. 44:205-210.
Page details
- Date modified: