Trypanosoma cruzi: Infectious substances pathogen safety data sheet

Section I – Infectious agent

Name

Trypanosoma cruzi

Agent type

Parasite

Taxonomy

Family

Trypanosomatidae

Genus

Trypanosoma

Species

cruzi

Synonym or cross-reference

Chagas disease, American trypanosomiasis.

Characteristics

Brief description

Trypanosoma cruzi (T. cruzi) is a protozoan parasite. Cellular features include a kinetoplast comprised of 20,000 to 30,000 circular mitochondrial DNA molecules, and the presence of a flagella for 2 of the 3 morphological stagesFootnote 1Footnote 2. The epimastigote form is flagellated, measures 20 to 40 μm in length, and has replicative activityFootnote 3. Trypomastigotes have a long slender shape with a shorter flagella, are non-replicating, and measure 12 to 20 μm in lengthFootnote 1Footnote 3. The amastigote forms are non-mobile, roughly spherical and measure 2 to 6.5 μm in diameterFootnote 3. The genome of T. cruzi is arranged in 41 chromosome pairsFootnote 4. The genome varies in size and structure for different strains, ranging from approximately 45 to 95 mega base pairs (Mbp) in lengthFootnote 5.

Properties

T. cruzi is the causative agent of Chagas disease. The life cycle of T. cruzi begins when an insect takes a blood meal from an infected host with T. cruzi trypomastigotes circulating in the blood. The trypomastigotes migrate to the insect midgut where they differentiate into epimastigotes and replicateFootnote 2. In the rectum of the insect, T. cruzi differentiates into the infectious metacyclic trypomastigote form that is excreted in insect feces and comes into contact with mucosal tissue or the bloodstream of a vertebrate hostFootnote 2. In a newly infected host, the metacyclic trypomastigote invades a host cell and differentiates into the amastigote formFootnote 2Footnote 6; the amastigotes then multiply by binary fission in the cytoplasm. Amastigotes can persist within the host cell as a transient, dormant non-proliferating amastigote formFootnote 7Footnote 8, or differentiate into a trypomastigote, lyse the infected cell, and proceed to infect adjacent cells or migrate through the bloodstream to infect other host tissuesFootnote 2. T. cruzi can infect many types of host cells, but have high affinity for cardiac and other muscle tissue (e.g., colon, esophagus)Footnote 9Footnote 10. Genetic exchange through sexual reproduction occurs, but appears to be rareFootnote 11.

Seven discrete typing units of T. cruzi have been defined: TcI-TcVI and TcBatFootnote 12Footnote 13Footnote 14. Chagas disease progressionFootnote 15 and virulence varies according to strainFootnote 16.

Section II – Hazard identification

Pathogenicity and toxicity

There are two distinct phases of T. cruzi infection. During the acute phase of illness, approximately 90% of T. cruzi-infected individuals are asymptomatic or have mild symptomsFootnote 9Footnote 17. Clinical signs of illness include fever, anorexia, malaise, headache, generalized or local edema, and enlargement of the liver, spleen, and lymph nodesFootnote 9Footnote 17. Some signs will vary according to the portal of entryFootnote 9. There may be swelling (chagoma) on the skin at the site of the insect bite, or in the case of parasite entry via ocular mucous membranes, signs may include unilateral conjunctivitis and swelling of the eyelid (Romaña sign)Footnote 9. The duration of the acute phase is 1 to 2 monthsFootnote 17. Approximately 1-5% of symptomatic acute cases are severe with hemorrhagic, jaundice, cardiac, and meningoencephalitis manifestationsFootnote 9Footnote 17. Acute illness mortality is less than 5% of symptomatic casesFootnote 9, although infections acquired via oral route have higher mortality (8 to 35%)Footnote 9Footnote 18. The majority of T. cruzi-infected individuals (70%) remain asymptomatic for life with the indeterminate chronic form of Chagas diseaseFootnote 17. Approximately 20-30% of individuals with the chronic form of Chagas disease will develop cardiomyopathy and/or digestive disease slowly over decades following initial T. cruzi infectionFootnote 17Footnote 19.

The clinical manifestation of T. cruzi infection in dogs is similar to disease in humansFootnote 20Footnote 21Footnote 22. Cardiac changes have been observed in other T. cruzi-infected animals, including raccoons and opossumsFootnote 23Footnote 24. Severe manifestations have been reported in some species (e.g., horse, red panda) but appear to be infrequentFootnote 25Footnote 26.

Epidemiology

Chagas disease is endemic in Mexico, Central America, and South America, where an estimated 5.7 million people are infected with T. cruzi in these regionsFootnote 27. Estimated T. cruzi infection prevalence varies according to the country, from less than 1% of the population in many Latin American countries to 6% of the population in BoliviaFootnote 27. There was a significant decline in Chagas disease prevalence (17.4 million to 7.7 million cases)Footnote 28, deaths (45,000 to 12,000 per year)Footnote 28Footnote 29, and incidence (700,000 to less than 50,000 new cases per year)Footnote 28Footnote 29 from the 1980s to 2005, due in part to widely implemented vector control measuresFootnote 27. Outbreaks in Chagas-disease endemic areas due to consumption of contaminated fruits and/or fruit juices are not uncommonFootnote 30Footnote 31Footnote 32.

Global prevalence of T. cruzi infection is 6 to 7 million casesFootnote 6Footnote 27. Chronic Chagas disease is increasingly observed in non-endemic areas including the United States, Canada, Europe, and Western Pacific countries due to migration of individuals from Chagas disease-endemic areasFootnote 33Footnote 34. Locally acquired cases of Chagas disease in the United States are rare (28 cases from 1955 to 2015)Footnote 35.

The genetic polymorphism IL17A rs2275913 has been associated with Chagas disease susceptibilityFootnote 36. Immunosuppressed individuals with chronic Chagas disease have a higher risk of disease reactivationFootnote 9Footnote 17Footnote 37Footnote 38.

Host range

Natural host(s)

T. cruzi can infect many mammalian species, including humans, non-human primatesFootnote 39Footnote 40, armadillosFootnote 6, anteatersFootnote 40, goatsFootnote 41, horsesFootnote 26, swineFootnote 6, ottersFootnote 40, raccoonsFootnote 6, skunksFootnote 6, bats, domestic and exotic felidsFootnote 40Footnote 42, cervidsFootnote 43, canids (e.g., dogs, wolves, fox)Footnote 40, bearsFootnote 25Footnote 40, and rodents (e.g., squirrels, wood rats)Footnote 6Footnote 44, as well as marsupials (e.g., opossum)Footnote 6.

Other host(s)

None.

Infectious dose

Unknown.

Incubation period

7 to 15 days for vectorborne transmission, 8 to 120 days for transfusion transmission, 3 to 22 days for oral transmissionFootnote 9Footnote 17.

Communicability

In Chagas disease-endemic areas, T. cruzi is primarily transmitted via contact with excretions and body fluids of infected triatomine insectsFootnote 9. T. cruzi can gain entry through contact with mucous membranes or through broken skin when feces of an infected triatomine is inadvertently rubbed into the bite wound. Transmission can also occur via consumption of food and drink, especially fruits and fruit juices, contaminated with T. cruziFootnote 17Footnote 45Footnote 46. Modes of T. cruzi transmission also include sexual transmissionFootnote 47, congenital transmission (5%)Footnote 48, blood transfusion, and solid organ transplantationFootnote 6Footnote 17. T. cruzi transmission in breastmilk is possible but not efficientFootnote 49. In some animal species, such as dogs, transmission can occur via intentional ingestion of triatomine insectsFootnote 22Footnote 50.

Section III – Dissemination

Reservoir

Reservoirs in the sylvatic transmission cycle include rodents (e.g., wood rats)Footnote 44Footnote 51, raccoonsFootnote 52, and opossumsFootnote 23Footnote 24Footnote 53. In some areas, dogs are a reservoir host in the domestic transmission cycle of T. cruziFootnote 54Footnote 55.

Zoonosis

Direct transmission between animals and humans has not been documented. Transmission occurs between animals and humans via a triatomine vector.

Vectors

T. cruzi can be transmitted through the feces of triatomine insects of the Reduviidae family. There are 152 species of triatomine insects, some of which have common names, including the kissing bugFootnote 24Footnote 56Footnote 57Footnote 58. Some vector species include Triatoma infestans, Panstrongylus megistus, T. dimidiata, and Rhodnius prolixusFootnote 6. Different species have different transmission efficienciesFootnote 33. Triatomine insects can colonize nests of reservoir hosts and human dwellings. Indoor residual spraying interventions, using pyrethroids (e.g., deltamethrin), have been an effective means of vector control, although resistance has been described in some areasFootnote 59Footnote 60.

Section IV – Stability and viability

Drug susceptibility/resistance

T. cruzi is susceptible to benznidazole and nifurtimox, which are used to treat clinical Chagas diseaseFootnote 61. Azoles in phase I or II clinical studies include posaconazole, ravuconazole, itraconazole, voriconazole, and albaconazole. Many other compounds have shown antitrypanosomal activity in vitro and/or small animal studies, including amiodarone and fexinidazoleFootnote 61Footnote 62. Drug repurposing studies have identified many candidates for the treatment of Chagas disease, such as benidipine, clofazimine, and tamoxifenFootnote 62Footnote 63. Natural compounds from plants have shown activity against T. cruzi and are a promising source for discovery of new drugsFootnote 64.

T. cruzi strains that are highly resistant (e.g., Colombian strain) and partially resistant to benznidazole have been describedFootnote 10Footnote 65.

Susceptibility to disinfectants

Unknown for T. cruzi. Sodium hypochlorite (0.05%), TriGene (0.2%), liquid hand soap, and ethanol are effective against other Trypanosoma speciesFootnote 66.

Physical inactivation

Heat treatment at 70 °C for 10 seconds and 50 °C for 5 minutes effectively eliminated Trypanosoma speciesFootnote 66Footnote 67. Riboflavin/UV light treatment has been used to inactivate T. cruzi in donated blood productsFootnote 68.

Survival outside host

T. cruzi can survive for up to 72 hours on sugar cane and fruitsFootnote 69Footnote 70. T. cruzi can survive in juice for up to 144 h at 4 °C and in refrigerated blood for over 18 daysFootnote 70Footnote 71.

Section V – First aid/medical

Surveillance

For acute phase disease, T. cruzi trypomastigotes can be observed by microscopy of a blood smearFootnote 17. PCR has been used to detect T. cruzi DNA in blood for the diagnosis of acute phase of the chagas diseaseFootnote 6Footnote 12Footnote 72. In the chronic phase of Chagas disease, IgG antibodies against T. cruzi can be detected in serum and saliva using ELISA and immunofluorescence assaysFootnote 6Footnote 17Footnote 73. Xenodiagnosis has also been usedFootnote 74.

Note: The specific recommendations for surveillance in the laboratory should come from the medical surveillance program, which is based on a local risk assessment of the pathogens and activities being undertaken, as well as an overarching risk assessment of the biosafety program as a whole. More information on medical surveillance is available in the Canadian Biosafety Handbook (CBH).

First aid/treatment

Acute phase illness can be treated successfully with benznidazole or nifurtimox (for 2 to 3 months)Footnote 17Footnote 75Footnote 76. Indeterminate chronic phase Chagas disease treatment can decrease the risk of developing, but not the progression of pre-existing, cardiomyopathyFootnote 10. Cure rates are low when drugs are administered during the chronic phase of diseaseFootnote 6Footnote 61.

T. cruzi-infected dogs treated with a combination of itraconazole and amiodarone showed clinical improvement and tested negative for T. cruzi DNA in bloodFootnote 20Footnote 21.

Note: The specific recommendations for first aid/treatment in the laboratory should come from the post-exposure response plan, which is developed as part of the medical surveillance program. More information on the post-exposure response plan can be found in the CBH.

Immunization

No vaccine is currently available.

Note: More information on the medical surveillance program can be found in the CBH, and by consulting the Canadian Immunization Guide.

Prophylaxis

None.

Note: More information on prophylaxis as part of the medical surveillance program can be found in the CBH.

Section VI – Laboratory hazard

Laboratory-acquired infections

Sixty-five T. cruzi laboratory-acquired infections prior to 2001 were documentedFootnote 77. The most common route of exposure was parenteralFootnote 77. In 2003, a laboratory technician was infected with T. cruzi following an accidental autoinoculation incidentFootnote 78.

Note: Please consult the Canadian Biosafety Standard (CBS) and CBH for additional details on requirements for reporting exposure incidents. A Canadian biosafety guideline describing notification and reporting procedures is also available.

Sources/specimens

Blood, saliva, tissue biopsy, cerebrospinal fluid.

Primary hazards

Primary hazards include autoinoculation with infectious material and exposure of mucous membranes or abraded skin to infectious materialFootnote 79. Work with triatomines infected with T. cruzi poses an additional risk to personnelFootnote 79.

Special hazards

None.

Section VII – Exposure controls/personal protection

Risk group classification

T. cruzi is a Risk Group 2 (RG2) Human Pathogen and RG2 Animal PathogenFootnote 80Footnote 81.

Containment requirements

Containment Level 2 facilities, equipment, and operational practices outlined in the CBS are required for work involving infectious or potentially infectious materials, animals, or cultures.

Protective clothing

The applicable Containment Level 2 requirements for personal protective equipment and clothing outlined in the CBS to be followed. At minimum, use of a labcoat and closed-toe cleanable shoes, gloves when direct skin contact with infected materials or animals is unavoidable, and eye protection where there is a known or potential risk of exposure to splashes.

Note: A local risk assessment will identify the appropriate hand, foot, head, body, eye/face, and respiratory protection, and the personal protective equipment requirements for the containment zone and work activities must be documented.

Other precautions

A biological safety cabinet (BSC) or other primary containment devices to be used for activities with open vessels, based on the risks associated with the inherent characteristics of the regulated material, the potential to produce infectious aerosols or aerosolized toxins, the handling of high concentrations of regulated materials, or the handling of large volumes of regulated materials.

Use of needles and syringes to be strictly limited. Bending, shearing, re-capping, or removing needles from syringes to be avoided, and if necessary, performed only as specified in standard operating procedures (SOPs). Additional precautions are required with work involving animals or large-scale activities.

Additional information

For diagnostic laboratories handling primary specimens that may contain T. cruzi, the following resources may be consulted:

Section VIII – Handling and storage

Spills

Allow aerosols to settle. Wearing personal protective equipment, gently cover the spill with absorbent paper towel and apply suitable disinfectant, starting at the perimeter and working towards the centre. Allow sufficient contact time before clean up (CBH).

Disposal

All materials/substances that have come in contact with the regulated materials should be completely decontaminated before they are removed from the containment zone or standard operating procedures (SOPs) to be in place to safely and securely move or transport waste out of the containment zone to a designated decontamination area / third party. This can be achieved by using decontamination technologies and processes that have been demonstrated to be effective against the regulated material, such as chemical disinfectants, autoclaving, irradiation, incineration, an effluent treatment system, or gaseous decontamination (CBH).

Storage

The applicable Containment Level 2 requirements for storage outlined in the CBS are to be followed. Primary containers of regulated materials removed from the containment zone to be labelled, leakproof, impact resistant, and kept either in locked storage equipment or within an area with limited access.

Section IX – Regulatory and other information

Canadian regulatory information

Controlled activities with T. cruzi require a Human Pathogens and Toxins Licence, issued by the Public Health Agency of CanadaFootnote 80. The following is a non-exhaustive list of applicable designations, regulations, or legislations:

Last file update

2020

Prepared by

Centre for Biosecurity, Public Health Agency of Canada.

Disclaimer

The scientific information, opinions, and recommendations contained in this Pathogen Safety Data Sheet have been developed based on or compiled from trusted sources available at the time of publication. Newly discovered hazards are frequent and this information may not be completely up to date. The Government of Canada accepts no responsibility for the accuracy, sufficiency, or reliability or for any loss or injury resulting from the use of the information.

Persons in Canada are responsible for complying with the relevant laws, including regulations, guidelines and standards applicable to the import, transport, and use of pathogens in Canada set by relevant regulatory authorities, including the Public Health Agency of Canada, Health Canada, Canadian Food Inspection Agency, Environment and Climate Change Canada, and Transport Canada. The risk classification and related regulatory requirements referenced in this Pathogen Safety Data Sheet, such as those found in the Canadian Biosafety Standard, may be incomplete and are specific to the Canadian context. Other jurisdictions will have their own requirements.

Copyright © Public Health Agency of Canada, 2023, Canada

References

Footnote 1

de Souza, W. 1999. A short review on the morphology of Trypanosoma cruzi: from 1909 to 1999. Mem. Inst. Oswaldo Cruz. 94 Suppl 1:17-36.

Return to footnote 1 referrer

Footnote 2

Cruz-Saavedra, L., G. A. Vallejo, F. Guhl, and J. D. Ramírez. 2020. Transcriptomic changes across the life cycle of Trypanosoma cruzi II. PeerJ. 8:e8947.

Return to footnote 2 referrer

Footnote 3

Martins, A., A. Gomes, E. G. de Mendonça, J. L. Fietto, L. Santana, de Almeida Oliveira, M. G., M. Geller, R. Santos, R. Vitorino, and R. Siqueira-Batista. 2012. Biology of Trypanosoma cruzi: An update. Infectio. 16:45-58.

Return to footnote 3 referrer

Footnote 4

Weatherly, D. B., C. Boehlke, and R. L. Tarleton. 2009. Chromosome level assembly of the hybrid Trypanosoma cruzi genome. BMC Genomics. 10:255-2164-10-255.

Return to footnote 4 referrer

Footnote 5

Vargas, N., A. Pedroso, and B. Zingales. 2004. Chromosomal polymorphism, gene synteny and genome size in T. cruzi I and T. cruzi II groups. Mol. Biochem. Parasitol. 138:131-141.

Return to footnote 5 referrer

Footnote 6

Bern, C., L. A. Messenger, J. D. Whitman, and J. H. Maguire. 2019. Chagas Disease in the United States: a Public Health Approach. Clin. Microbiol. Rev. 33:e00023-19.

Return to footnote 6 referrer

Footnote 7

Barrett, M. P., D. E. Kyle, L. D. Sibley, J. B. Radke, and R. L. Tarleton. 2019. Protozoan persister-like cells and drug treatment failure. Nat. Rev. Microbiol. 17:607-620.

Return to footnote 7 referrer

Footnote 8

Sánchez-Valdéz, F. J., A. Padilla, W. Wang, D. Orr, and R. L. Tarleton. 2018. Spontaneous dormancy protects Trypanosoma cruzi during extended drug exposure. Elife. 7:10.7554/eLife.34039.

Return to footnote 8 referrer

Footnote 9

Rassi, A., Jr, A. Rassi, and J. A. Marin-Neto. 2010. Chagas disease. Lancet. 375:1388-1402.

Return to footnote 9 referrer

Footnote 10

Martinez, S. J., P. S. Romano, and D. M. Engman. 2020. Precision Health for Chagas Disease: Integrating Parasite and Host Factors to Predict Outcome of Infection and Response to Therapy. Front. Cell. Infect. Microbiol. 10:210.

Return to footnote 10 referrer

Footnote 11

Berry, A. S. F., R. Salazar-Sánchez, R. Castillo-Neyra, K. Borrini-Mayorí, C. Chipana-Ramos, M. Vargas-Maquera, J. Ancca-Juarez, C. Náquira-Velarde, M. Z. Levy, D. Brisson, and Chagas Disease Working Group in Arequipa. 2019. Sexual reproduction in a natural Trypanosoma cruzi population. PLoS Negl Trop. Dis. 13:e0007392

Return to footnote 11 referrer

Footnote 12

Zingales, B., S. G. Andrade, M. R. Briones, D. A. Campbell, E. Chiari, O. Fernandes, F. Guhl, E. Lages-Silva, A. M. Macedo, C. R. Machado, M. A. Miles, A. J. Romanha, N. R. Sturm, M. Tibayrenc, A. G. Schijman, and Second Satellite Meeting. 2009. A new consensus for Trypanosoma cruzi intraspecific nomenclature: second revision meeting recommends TcI to TcVI. Mem. Inst. Oswaldo Cruz. 104:1051-1054.

Return to footnote 12 referrer

Footnote 13

Pinto, C. M., E. K. Kalko, I. Cottontail, N. Wellinghausen, and V. M. Cottontail. 2012. TcBat a bat-exclusive lineage of Trypanosoma cruzi in the Panama Canal Zone, with comments on its classification and the use of the 18S rRNA gene for lineage identification. Infect. Genet. Evol. 12:1328-1332.

Return to footnote 13 referrer

Footnote 14

Lima, L., O. Espinosa-Álvarez, P. A. Ortiz, J. A. Trejo-Varón, J. C. Carranza, C. M. Pinto, M. G. Serrano, G. A. Buck, E. P. Camargo, and M. M. Teixeira. 2015. Genetic diversity of Trypanosoma cruzi in bats, and multilocus phylogenetic and phylogeographical analyses supporting Tcbat as an independent DTU (discrete typing unit). Acta Trop. 151:166-177.

Return to footnote 14 referrer

Footnote 15

Monje-Rumi, M. M., N. Floridia-Yapur, M. P. Zago, P. G. Ragone, C. M. Pérez Brandán, S. Nuñez, N. Barrientos, N. Tomasini, and P. Diosque. 2020. Potential association of Trypanosoma cruzi DTUs TcV and TcVI with the digestive form of Chagas disease. Infect. Genet. Evol. 84:104329.

Return to footnote 15 referrer

Footnote 16

Herreros-Cabello, A., F. Callejas-Hernández, M. Fresno, and N. Gironès. 2019. Comparative proteomic analysis of trypomastigotes from Trypanosoma cruzi strains with different pathogenicity. Infection, Genetics and Evolution. 76:104041.

Return to footnote 16 referrer

Footnote 17

Echeverría, L. E., R. Marcus, G. Novick, S. Sosa-Estani, K. Ralston, E. J. Zaidel, C. Forsyth, A. L. P. RIbeiro, I. Mendoza, M. L. Falconi, J. Mitelman, C. A. Morillo, A. C. Pereiro, M. J. Pinazo, R. Salvatella, F. Martinez, P. Perel, Á Liprandi, D. J. Piñeiro, and G. R. Molina. 2020. WHF IASC Roadmap on Chagas Disease. Glob. Heart. 15:26.

Return to footnote 17 referrer

Footnote 18

Barreto-de-Albuquerque, J., D. Silva-dos-Santos, A. R. Pérez, L. R. Berbert, E. de Santana-van-Vliet, D. A. Farias-de-Oliveira, O. C. Moreira, E. Roggero, C. E. de Carvalho-Pinto, J. Jurberg, V. Cotta-de-Almeida, O. Bottasso, W. Savino, and J. de Meis. 2015. Trypanosoma cruzi Infection through the Oral Route Promotes a Severe Infection in Mice: New Disease Form from an Old Infection? PLoS Negl Trop. Dis. 9:e0003849.

Return to footnote 18 referrer

Footnote 19

Rassi, A., Jr, A. Rassi, and J. Marcondes de Rezende. 2012. American trypanosomiasis (Chagas disease). Infect. Dis. Clin. North Am. 26:275-291.

Return to footnote 19 referrer

Footnote 20

Madigan, R., S. Majoy, K. Ritter, J. Luis Concepción, M. E. Márquez, S. C. Silva, C. L. Zao, A. Pérez Alvarez, A. J. Rodriguez-Morales, A. C. Mogollón-Mendoza, J. S. Estep, G. Benaím, and A. E. Paniz-Mondolfi. 2019. Investigation of a combination of amiodarone and itraconazole for treatment of American trypanosomiasis (Chagas disease) in dogs. J. Am. Vet. Med. Assoc. 255:317-329.

Return to footnote 20 referrer

Footnote 21

Zao, C. L., Y. C. Yang, L. Tomanek, A. Cooke, R. Berger, L. C. Chien, and R. Madigan. 2019. PCR monitoring of parasitemia during drug treatment for canine Chagas disease. J. Vet. Diagn. Invest. 31:742-746.

Return to footnote 21 referrer

Footnote 22

Barr, S. C. 2009. Canine Chagas' Disease (American Trypanosomiasis) in North America. Veterinary Clinics: Small Animal Practice. 39:1055-1064.

Return to footnote 22 referrer

Footnote 23

Zecca, I. B., C. L. Hodo, S. Slack, L. Auckland, and S. A. Hamer. 2020. Trypanosoma cruzi infections and associated pathology in urban-dwelling Virginia opossums (Didelphis virginiana). Int. J. Parasitol. Parasites Wildl. 11:287-293.

Return to footnote 23 referrer

Footnote 24

Klotz, S. A., P. L. Dorn, M. Mosbacher, and J. O. Schmidt. 2014. Kissing bugs in the United States: risk for vector-borne disease in humans. Environ. Health. Insights. 8:49-59.

Return to footnote 24 referrer

Footnote 25

Huckins, G. L., D. Eshar, D. Schwartz, M. Morton, B. H. Herrin, A. Cerezo, M. J. Yabsley, and S. M. Schneider. 2019. Trypanosoma cruzi infection in a zoo-housed red panda in Kansas. J. Vet. Diagn. Invest. 31:752-755.

Return to footnote 25 referrer

Footnote 26

Bryan, L. K., S. A. Hamer, S. Shaw, R. Curtis-Robles, L. D. Auckland, C. L. Hodo, K. Chaffin, and R. R. Rech. 2016. Chagas disease in a Texan horse with neurologic deficits. Vet. Parasitol. 216:13-17.

Return to footnote 26 referrer

Footnote 27

Anonymous 2015. Chagas disease in Latin America: an epidemiological update based on 2010 estimates. Wkly. Epidemiol. Rec. 90:33-43.

Return to footnote 27 referrer

Footnote 28

Moncayo, A., and A. C. Silveira. 2009. Current epidemiological trends for Chagas disease in Latin America and future challenges in epidemiology, surveillance and health policy. Mem. Inst. Oswaldo Cruz. 104 Suppl 1:17-30.

Return to footnote 28 referrer

Footnote 29

Pan American Health Organization, and World Health Organization. 2019. Guidelines for the Diagnosis and Treatment of Chagas Disease.

Return to footnote 29 referrer

Footnote 30

Alarcón de Noya, B., Z. Díaz-Bello, C. Colmenares, R. Ruiz-Guevara, L. Mauriello, R. Zavala-Jaspe, J. A. Suarez, T. Abate, L. Naranjo, M. Paiva, L. Rivas, J. Castro, J. Márques, I. Mendoza, H. Acquatella, J. Torres, and O. Noya. 2010. Large urban outbreak of orally acquired acute Chagas disease at a school in Caracas, Venezuela. J. Infect. Dis. 201:1308-1315.

Return to footnote 30 referrer

Footnote 31

Beltrão Hde, B., P. Cerroni Mde, D. R. Freitas, A. Y. Pinto, C. Valente Vda, S. A. Valente, G. Costa Ede, and J. Sobel. 2009. Investigation of two outbreaks of suspected oral transmission of acute Chagas disease in the Amazon region, Para State, Brazil, in 2007. Trop. Doct. 39:231-232.

Return to footnote 31 referrer

Footnote 32

Franco-Paredes, C., W. E. Villamil-Gómez, J. Schultz, A. F. Henao-Martínez, G. Parra-Henao, A. Rassi Jr, A. J. Rodríguez-Morales, and J. A. Suarez. 2020. A deadly feast: Elucidating the burden of orally acquired acute Chagas disease in Latin America - Public health and travel medicine importance. Travel Med. Infect. Dis. 101565.

Return to footnote 32 referrer

Footnote 33

Lidani, K. C. F., F. A. Andrade, L. Bavia, F. S. Damasceno, M. H. Beltrame, I. J. Messias-Reason, and T. L. Sandri. 2019. Chagas Disease: From Discovery to a Worldwide Health Problem. Front. Public. Health. 7:166.

Return to footnote 33 referrer

Footnote 34

Zheng, C., O. Quintero, E. K. Revere, M. B. Oey, F. Espinoza, Y. A. Puius, D. Ramirez-Baron, C. R. Salama, L. F. Hidalgo, F. S. Machado, O. Saeed, J. Shin, S. R. Patel, C. M. Coyle, and H. B. Tanowitz. 2020. Chagas Disease in the New York City Metropolitan Area. Open Forum. Infect. Dis. 7:ofaa156.

Return to footnote 34 referrer

Footnote 35

Turabelidze, G., A. Vasudevan, C. Rojas-Moreno, S. P. Montgomery, M. Baker, D. Pratt, and S. Enyeart. 2020. Autochthonous Chagas Disease - Missouri, 2018. MMWR Morb. Mortal. Wkly. Rep. 69:193-195.

Return to footnote 35 referrer

Footnote 36

Strauss, M., M. Palma-Vega, D. Casares-Marfil, P. Bosch-Nicolau, M. S. Lo Presti, I. Molina, C. I. González, Chagas Genetics CYTED Network, J. Martín, and M. Acosta-Herrera. 2020. Genetic polymorphisms of IL17A associated with Chagas disease: results from a meta-analysis in Latin American populations. Sci. Rep. 10:5015-020-61965-5

Return to footnote 36 referrer

Footnote 37

Bern, C. 2012. Chagas disease in the immunosuppressed host. Curr. Opin. Infect. Dis. 25:450-457.

Return to footnote 37 referrer

Footnote 38

Perez, C. J., A. J. Lymbery, and R. C. A. Thompson. 2015. Reactivation of Chagas Disease: Implications for Global Health. Trends Parasitol. 31:595-603.

Return to footnote 38 referrer

Footnote 39

Kendricks, A. L., S. B. Gray, G. K. Wilkerson, C. M. Sands, C. R. Abee, B. J. Bernacky, P. J. Hotez, M. E. Bottazzi, S. L. Craig, and K. M. Jones. 2020. Reproductive Outcomes in Rhesus Macaques (Macaca mulatta) with Naturally-acquired Trypanosoma cruzi Infection. Comp. Med. 70:152-159.

Return to footnote 39 referrer

Footnote 40

Reis, F. C., T. T. C. Minuzzi-Souza, M. Neiva, R. V. Timbó, I. O. B. de Morais, T. M. de Lima, M. Hecht, N. Nitz, and R. Gurgel-Gonçalves. 2020. Trypanosomatid infections in captive wild mammals and potential vectors at the Brasilia Zoo, Federal District, Brazil. Vet. Med. Sci. 6:248-256.

Return to footnote 40 referrer

Footnote 41

Muñoz-San Martín, C., F. Campo Verde Arbocco, M. Saavedra, E. A. Actis, T. A. Ríos, A. M. Abba, M. E. Morales, P. E. Cattan, G. A. Jahn, and M. Superina. 2020. High rates of Trypanosoma cruzi infection in goats from Mendoza province, Argentina: Parasite loads in blood and seasonal variation. Acta Trop. 208:105493.

Return to footnote 41 referrer

Footnote 42

Zecca, I. B., C. L. Hodo, S. Slack, L. Auckland, S. Rodgers, K. C. Killets, A. B. Saunders, and S. A. Hamer. 2020. Prevalence of Trypanosoma cruzi infection and associated histologic findings in domestic cats (Felis catus). Vet. Parasitol. 278:109014.

Return to footnote 42 referrer

Footnote 43

Gunter, S. M., C. Cordray, R. Gorchakov, I. Du, B. Dittmar, E. L. Brown, K. O. Murray, and M. S. Nolan. 2018. Identification of White-tailed Deer ( Odocoileus virginianus) as a Novel Reservoir Species for Trypanosoma cruzi in Texas, USA. J. Wildl. Dis. 54:814-818.

Return to footnote 43 referrer

Footnote 44

Erazo, D., C. González, F. Guhl, J. D. Umaña, J. A. Morales-Betancourt, and J. Cordovez. 2020. Rhodnius prolixus Colonization and Trypanosoma cruzi Transmission in Oil Palm (Elaeis guineensis) Plantations in the Orinoco Basin, Colombia. Am. J. Trop. Med. Hyg.

Return to footnote 44 referrer

Footnote 45

Jansen, A. M., S. C. D. C. Xavier, and A. L. R. Roque. 2020. Landmarks of the Knowledge and Trypanosoma cruzi Biology in the Wild Environment. Front. Cell. Infect. Microbiol. 10:10.

Return to footnote 45 referrer

Footnote 46

Shikanai-Yasuda, M. A., and N. B. Carvalho. 2012. Oral transmission of Chagas disease. Clin. Infect. Dis. 54:845-852

Return to footnote 46 referrer

Footnote 47

Gomes, C., A. B. Almeida, A. C. Rosa, P. F. Araujo, and A. R. L. Teixeira. 2019. American trypanosomiasis and Chagas disease: Sexual transmission. Int. J. Infect. Dis. 81:81-84.

Return to footnote 47 referrer

Footnote 48

Howard, E. J., X. Xiong, Y. Carlier, S. Sosa-Estani, and P. Buekens. 2014. Frequency of the congenital transmission of Trypanosoma cruzi: a systematic review and meta-analysis. Bjog. 121:22-33.

Return to footnote 48 referrer

Footnote 49

Norman, F. F., and R. López-Vélez. 2013. Chagas disease and breast-feeding. Emerg. Infect. Dis. 19:1561-1566.

Return to footnote 49 referrer

Footnote 50

Meyers, A. C., M. M. Ellis, J. C. Purnell, L. D. Auckland, M. Meinders, A. B. Saunders, and S. A. Hamer. 2020. Selected cardiac abnormalities in Trypanosoma cruzi serologically positive, discordant, and negative working dogs along the Texas-Mexico border. BMC Vet. Res. 16:101-020-02322-6.

Return to footnote 50 referrer

Footnote 51

Charles, R. A., S. Kjos, A. E. Ellis, J. C. Barnes, and M. J. Yabsley. 2013. Southern plains woodrats (Neotoma micropus) from southern Texas are important reservoirs of two genotypes of Trypanosoma cruzi and host of a putative novel Trypanosoma species. Vector Borne Zoonotic Dis. 13:22-30.

Return to footnote 51 referrer

Footnote 52

Majeau, A., H. Pronovost, A. Sanford, E. Cloherty, A. N. Anderson, G. Balsamo, L. Gee, S. C. Straif-Bourgeois, and C. Herrera. 2020. Raccoons As an Important Reservoir for Trypanosoma cruzi: A Prevalence Study from Two Metropolitan Areas in Louisiana. Vector Borne Zoonotic Dis.

Return to footnote 52 referrer

Footnote 53

Hodo, C. L., G. K. Wilkerson, E. C. Birkner, S. B. Gray, and S. A. Hamer. 2018. Trypanosoma cruzi Transmission Among Captive Nonhuman Primates, Wildlife, and Vectors. Ecohealth. 15:426-436.

Return to footnote 53 referrer

Footnote 54

Beard, C. B., G. Pye, F. J. Steurer, R. Rodriguez, R. Campman, A. T. Peterson, J. Ramsey, R. A. Wirtz, and L. E. Robinson. 2003. Chagas disease in a domestic transmission cycle, southern Texas, USA. Emerg. Infect. Dis. 9:103-105.

Return to footnote 54 referrer

Footnote 55

Estrada-Franco, J. G., V. Bhatia, H. Diaz-Albiter, L. Ochoa-Garcia, A. Barbabosa, J. C. Vazquez-Chagoyan, M. A. Martinez-Perez, C. Guzman-Bracho, and N. Garg. 2006. Human Trypanosoma cruzi infection and seropositivity in dogs, Mexico. Emerg. Infect. Dis. 12:624-630.

Return to footnote 55 referrer

Footnote 56

Telleria, J., and M. Tibayrenc. 2017. American Trypanosomiasis Chagas Disease: One Hundred Years of Research, second edition. Elsevier.

Return to footnote 56 referrer

Footnote 57

Monteiro, F. A., C. Weirauch, M. Felix, C. Lazoski, and F. Abad-Franch. 2018. Evolution, Systematics, and Biogeography of the Triatominae, Vectors of Chagas Disease, p. 265. D. Rollinson and J. R. Stothard (eds.), Advances in Parasitology. Elsevier, Academic Press.

Return to footnote 57 referrer

Footnote 58

Eberhard, F. E., S. Cunze, J. Kochmann, and S. Klimpel. 2020. Modelling the climatic suitability of Chagas disease vectors on a global scale. Elife. 9:10.7554/eLife.52072.

Return to footnote 58 referrer

Footnote 59

Mougabure-Cueto, G., and M. I. Picollo. 2015. Insecticide resistance in vector Chagas disease: evolution, mechanisms and management. Acta Trop. 149:70-85.

Return to footnote 59 referrer

Footnote 60

Samuels, A. M., E. H. Clark, G. Galdos-Cardenas, R. E. Wiegand, L. Ferrufino, S. Menacho, J. Gil, J. Spicer, J. Budde, M. Z. Levy, R. W. Bozo, R. H. Gilman, C. Bern, and Working Group on Chagas Disease in Bolivia and Peru. 2013. Epidemiology of and impact of insecticide spraying on Chagas disease in communities in the Bolivian Chaco. PLoS Negl Trop. Dis. 7:e2358.

Return to footnote 60 referrer

Footnote 61

Sales Junior, P. A., I. Molina, S. M. Fonseca Murta, A. Sánchez-Montalvá, F. Salvador, R. Corrêa-Oliveira, and C. M. Carneiro. 2017. Experimental and Clinical Treatment of Chagas Disease: A Review. Am. J. Trop. Med. Hyg. 97:1289-1303

Return to footnote 61 referrer

Footnote 62

Ribeiro, V., N. Dias, T. Paiva, L. Hagström-Bex, N. Nitz, R. Pratesi, and M. Hecht. 2020. Current trends in the pharmacological management of Chagas disease. Int. J. Parasitol. Drugs Drug Resist. 12:7-17.

Return to footnote 62 referrer

Footnote 63

Landoni, M., T. Piñero, L. L. Soprano, F. Garcia-Bournissen, L. Fichera, M. I. Esteva, V. G. Duschak, and A. S. Couto. 2019. Tamoxifen acts on Trypanosoma cruzi sphingolipid pathway triggering an apoptotic death process. Biochem. Biophys. Res. Commun. 516:934-940.

Return to footnote 63 referrer

Footnote 64

Martinez-Peinado, N., N. Cortes-Serra, L. Torras-Claveria, M. J. Pinazo, J. Gascon, J. Bastida, and J. Alonso-Padilla. 2020. Amaryllidaceae alkaloids with anti-Trypanosoma cruzi activity. Parasit. Vectors. 13:299-020-04171-6.

Return to footnote 64 referrer

Footnote 65

Camandaroba, E. L., E. A. Reis, M. S. Gonçalves, M. G. Reis, and S. G. Andrade. 2003. Trypanosoma cruzi: susceptibility to chemotherapy with benznidazole of clones isolated from the highly resistant Colombian strain. Rev. Soc. Bras. Med. Trop. 36:201-209.

Return to footnote 65 referrer

Footnote 66

Wang, X., M. Jobe, K. M. Tyler, and D. Steverding. 2008. Efficacy of common laboratory disinfectants and heat on killing trypanosomatid parasites. Parasit. Vectors. 1:35-3305-1-35.

Return to footnote 66 referrer

Footnote 67

de Oliveira, A. C., V. T. Soccol, and H. Rogez. 2019. Prevention methods of foodborne Chagas disease: Disinfection, heat treatment and quality control by RT-PCR. Int. J. Food Microbiol. 301:34-40.

Return to footnote 67 referrer

Footnote 68

Cardo, L. J., J. Salata, J. Mendez, H. Reddy, and R. Goodrich. 2007. Pathogen inactivation of Trypanosoma cruzi in plasma and platelet concentrates using riboflavin and ultraviolet light. Transfus. Apher. Sci. 37:131-137.

Return to footnote 68 referrer

Footnote 69

Cardoso, A. V., S. A. Lescano, V. Amato Neto, E. Gakiya, and S. V. Santos. 2006. Survival of Trypanosoma cruzi in sugar cane used to prepare juice. Rev. Inst. Med. Trop. Sao Paulo. 48:287-289.

Return to footnote 69 referrer

Footnote 70

Barbosa, R. L., V. L. Dias, K. S. Pereira, F. L. Schmidt, R. M. Franco, A. M. Guaraldo, D. P. Alves, and L. A. Passos. 2012. Survival in vitro and virulence of Trypanosoma cruzi in açaí pulp in experimental acute Chagas disease. J. Food Prot. 75:601-606.

Return to footnote 70 referrer

Footnote 71

Wendel Neto, S. 1995. Current concepts on the transmission of bacteria and parasites by blood components. Sao Paulo Med. J. 113:1036-1052.

Return to footnote 71 referrer

Footnote 72

Kann, S., M. Kunz, J. Hansen, J. Sievertsen, J. J. Crespo, A. Loperena, S. Arriens, and T. Dandekar. 2020. Chagas Disease: Detection of Trypanosoma cruzi by a New, High-Specific Real Time PCR. J. Clin. Med. 9:1517.

Return to footnote 72 referrer

Footnote 73

de Oliveira, L. C., N. B. Pereira, C. H. V. Moreira, A. L. Bierrenbach, F. C. Salles, M. de Souza-Basqueira, E. R. Manuli, A. M. Ferreira, C. D. L. Oliveira, C. S. Cardoso, A. L. P. Ribeiro, and E. C. Sabino. 2020. ELISA Saliva for Trypanosoma cruzi Antibody Detection: An Alternative for Serological Surveys in Endemic Regions. Am. J. Trop. Med. Hyg. 102:800-803.

Return to footnote 73 referrer

Footnote 74

Sánchez-Vega, J. T., A. Almanza-Mackintoy, A. V. Luna-Santillán, and T. De La Sancha-Solares. 2020. A case report of Chagas disease in acute phase diagnosed by xenodiagnosis. Parasitol. Int. 77:102121.

Return to footnote 74 referrer

Footnote 75

Simón, M., M. A. Iborra, B. Carrilero, M. Romay-Barja, C. Vázquez, L. J. Gil-Gallardo, and M. Segovia. 2020. The Clinical and Parasitologic Follow-up of Trypanosoma cruzi-infected Children in a Nonendemic Country. Pediatr. Infect. Dis. J. 39:494-499.

Return to footnote 75 referrer

Footnote 76

Meymandi, S., S. Hernandez, S. Park, D. R. Sanchez, and C. Forsyth. 2018. Treatment of Chagas Disease in the United States. Curr. Treat. Options Infect. Dis. 10:373-388.

Return to footnote 76 referrer

Footnote 77

Herwaldt, B. L. 2001. Laboratory-acquired parasitic infections from accidental exposures. Clin. Microbiol. Rev. 14:659-88.

Return to footnote 77 referrer

Footnote 78

Kinoshita-Yanaga, A. T., M. J. Toledo, S. M. Araújo, B. P. Vier, and M. L. Gomes. 2009. Accidental infection by Trypanosoma cruzi follow-up by the polymerase chain reaction: case report. Rev. Inst. Med. Trop. Sao Paulo. 51:295-298.

Return to footnote 78 referrer

Footnote 79

U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, and National Institutes of Health. 2009. Biosafety in Microbiological and Biomedical Laboratories, 5th Edition.

Return to footnote 79 referrer

Footnote 80

Public Health Agency of Canada. 2019. Human Pathogens and Toxins Act (HPTA) (S.C. 2009, c.24).

Return to footnote 80 referrer

Footnote 81

Public Health Agency of Canada. 2019. ePATHogen - Risk Group Database. 2019.

Return to footnote 81 referrer

Page details

Date modified: