Aggregatibacter actinomycetemcomitans: Infectious substances pathogen safety data sheet 

Section I - Infectious agent

Name

Aggregatibacter actinomycetemcomitans

Agent type

Bacteria

Taxonomy

Family

Pasteurellaceae

Genus

Aggregatibacter

Species

actinomycetemcomitans

Synonym or cross - reference

Formerly Actinobacillus actinomycetemcomitans, Haemophilus actinomycetemcomitans, Bacterium actinomycetemcomitansFootnote 1Footnote 2.

Characteristics

Brief description

Aggregatibacter actinomycetemcomitans is a Gram-negative, catalase-positive, nonmotile coccobacillus measuring approximately 0.4 x 0.1 μmFootnote 1. Fimbriae may occur in a peritrichous array, measuring more than 2 µm in diameter, and in bundles, forming colonies with a star-shaped interior (star-positive), or star-negative colonies in the case of nonfimbriated strainsFootnote 1Footnote 3. Seven serotypes (a-g) have been identified based on the surface polysaccharide located on the O-side chainFootnote 4. The genome of model strain IDH781 is approximately 2.2 Mbp in size with a G+C content of 44.3%, consistent with other strainsFootnote 5.

Properties

A. actinomycetemcomitans is a fastidious facultative anaerobe that grows well in microaerophilic environments with 5-10% CO2Footnote 6. Mature colonies form on chocolate agar in 2-3 daysFootnote 7. A. actinomycetemcomitans are commensal bacteria of the human oral cavity; they inhabit dental plaque and oral biofilm. Adhesin proteins aid in binding to surfaces in the oral cavityFootnote 8. Virulence factors produced by A. actinomycetemcomitans include leukotoxin (LtxA), epitheliotoxin, bacteriocin, collagenase, and a cytolethal distending toxin (Cdt)Footnote 9. Virulence potential varies among strains; strain JP2 is highly leukotoxicFootnote 10. Immunosuppressive proteins secreted by A. actinomycetemcomitans inhibits DNA, RNA, protein, IgG, and IgM synthesis in human lymphocytes and inhibits B and T cell responses to mitogensFootnote 4.

Section II - Hazard identification

Pathogenicity and toxicity

A. actinomycetemcomitans is the major causative agent of localized aggressive periodontitisFootnote 11Footnote 12Footnote 13. Development of periodontal disease is associated with presence of high numbers of A. actinomycetemcomitans; the estimated bacterial load threshold is 3.3 x 104 A. actinomycetemcomitans cellsFootnote 14. Localized aggressive periodontitis is characterized by bone loss around the first molars and incisors, and bleeding at infection sitesFootnote 15.

A. actinomycetemcomitans is also involved in many non-oral conditions including endocarditis, endophthalmitis, brain abscess, skin infections, osteomyelitis, septic arthritis, urinary tract infections, pulmonary infections, and spondylitisFootnote 16Footnote 17Footnote 18Footnote 19Footnote 20Footnote 21.

Infective endocarditis caused by A. actinomycetemcomitans can present symptoms including intermittent fever, chills, malaise, and weight lossFootnote 22. Infection has a mean interval from onset of symptoms to diagnosis of 3 months. The overall mortality rate from A. actinomycetemcomitans- associated endocarditis is approximately 18%Footnote 14Footnote 17.

Endophthalmitis caused by A. actinomycetemcomitans can present with mainly decreased visual acuity accompanied by fever and pain. Symptom duration ranges from 3 days to 3 months. Infection is usually effectively resolved using antibiotics and potential vitrectomy. No mortality has been reportedFootnote 23.

Osteomyelitis caused by A. actinomycetemcomitans can present symptoms including pain, swelling, pus discharge, and weakness in the affected area. Symptom duration ranges from 2 days to 7 months. Treatment with antibiotics and debridement is usually effective in resolving the infectionFootnote 24.

A. actinomycetemcomitans has recently shown significant association with development of coronary disease and atherosclerosis, potentially due to the activation of cross-reactive immune responsesFootnote 25.

A. actinomycetemcomitans has been found in non-human primate species and has been detected in domestic felines and canines with periodontal diseaseFootnote 18Footnote 26.

Epidemiology

A. actinomycetemcomitans infections occur worldwide, present in 10% of normal children and approximately 25-30% of healthy individuals harbour the bacteriaFootnote 2Footnote 27.

A. actinomycetemcomitans is commonly associated with severe (chronic) and aggressive periodontitisFootnote 13. Severe periodontitis affects 5-20% of adults globally, while prevalence of aggressive periodontitis is 0.1-5%Footnote 13Footnote 28Footnote 29Footnote 30. Carriage rates of A. actinomycetemcomitans vary geographically and among different ethnic groups, which may be due to host geneticsFootnote 13. Presence of the highly leukotoxic JP2 strain is most prevalent in African populations and their descendants, while Asian populations are regularly colonized with A. actinomycetemcomitans serotype cFootnote 13Footnote 31Footnote 32. Serotypes a, b, and c are most prevalent in the oral cavityFootnote 1. The JP2 strain has been observed to infect younger populations under 35 years old, while serotype c infects older populationsFootnote 33.

Host range

Natural host(s)

Humans, non-human primates, and domestic felines and caninesFootnote 26Footnote 27.

Other host(s)

Rats and guinea pigs are experimentally infected hostsFootnote 34Footnote 35.

Infectious dose

Unknown.

Incubation period

Unknown.

Communicability

Person-to-person transmission can occur via salivaFootnote 12Footnote 36; however the transfer of bacteria does not necessarily result in colonization of the hostFootnote 37. Vertical and horizontal transmission of A. actinomycetemcomitans has been reported, although horizontal transmission is more rare than parent-child transmissionFootnote 38Footnote 39Footnote 40. Shared toothbrushes, eating utensils, and contact with damaged skin or mucous membranes are possible vehicles of transmissionFootnote 41Footnote 42Footnote 43.

Section III - Dissemination

Reservoir

Humans.

Zoonosis

None.

Vectors

None.

Section IV - Stability and viability

Drug susceptibility/resistance

Generally susceptible to carbapenemsFootnote 6Footnote 44, mezlocillinFootnote 6, aminoglycosidesFootnote 6Footnote 45Footnote 46, fluoroquinolonesFootnote 6Footnote 44Footnote 46, cephalosporinsFootnote 45, amoxicillinFootnote 47Footnote 48, azithromycinFootnote 47, doxycyclineFootnote 49, metronidazoleFootnote 50, cotrimoxazoleFootnote 6, rifampicinFootnote 6, chloramphenicolFootnote 6Footnote 44, clarithromycinFootnote 6, and azithromycinFootnote 6. Synergistic effects have been observed against A. actinomycetemcomitans when metronidazole and some beta-lactam antibiotics (e.g., amoxicillin, cefixime) are used in combinationFootnote 51.

Generally resistant to vancomycinFootnote 6, erythromycinFootnote 6Footnote 44, clindamycinFootnote 6, methicillinFootnote 6, and tetracyclineFootnote 46.

Susceptibility to disinfectants

Use of 0.2% chlorhexidine has been demonstrated to have antibacterial effects against A. actinomycetemcomitans isolated from biofilm and cultured on agarFootnote 52. Sodium hypochlorite and hydrogen peroxide are effective against gram-negative biofilm bacteriaFootnote 53Footnote 54. Other chemical disinfectants used against closely-related bacteria include chloramine-TFootnote 54, quaternary ammonium compound formulationsFootnote 54, 60-90% ethanol and isopropanolFootnote 54, 2.5% glutaraldehydeFootnote 55, 6% formaldehydeFootnote 55, and 6.8% glyoxalFootnote 55.

Physical inactivation

A. actinomycetemcomitans cells can be inactivated by irradiation with blue diode laser (Blue DL) and blue light-emitting diode (Blue LED) or Red DL and Red LED at wavelengths of 450, 430-460, 635, and 630 nm, respectively, and applied energy density of 60J/cm2 for 60 secondsFootnote 56Footnote 57. Application of heat at temperatures from 60 to 90oC for 30 minutes are effective at inactivating strains of A. actinomycetemcomitansFootnote 58.

Survival outside host

A. actinomycetemcomitans have been recovered from blood cultures incubated for more than 14 daysFootnote 6.

Section V - First aid/medical

Surveillance

Diagnosis is accomplished through the monitoring of clinical symptoms. A. actinomycetemcomitans can be identified by bacterial isolation on enriched growth media (e.g., chocolate agar) followed by confirmation testing using 16S rRNA sequencing or matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometryFootnote 59.

Note: The specific recommendations for surveillance in the laboratory should come from the medical surveillance program, which is based on a local risk assessment of the pathogens and activities being undertaken, as well as an overarching risk assessment of the biosafety program as a whole. More information on medical surveillance is available in the Canadian Biosafety Handbook.

First aid/treatment

Infection can be treated with appropriate antibiotics. Amoxicillin in combination with metronidazole is commonly used to treat A. actinomycetemcomitans infectionFootnote 50.

Note: The specific recommendations for first aid/treatment in the laboratory should come from the post-exposure response plan, which is developed as part of the medical surveillance program. More information on the post-exposure response plan can be found in the Canadian Biosafety Handbook.

Immunization

No vaccine currently available. However, a novel strategy using outer membrane vesicles as post-exposure vaccination in mice has shown bacterial clearance effects when compared to a control, non-vaccinated groupFootnote 60.

Note: More information on the medical surveillance program can be found in the Canadian Biosafety Handbook, and by consulting the Canadian Immunization Guide.

Prophylaxis

None.

Note: More information on prophylaxis as part of the medical surveillance program can be found in the Canadian Biosafety Handbook.

Section VI - Laboratory hazard

Laboratory-acquired infections

None reported to date.

Note: Please consult the Canadian Biosafety Standard and Canadian Biosafety Handbook for additional details on requirements for reporting exposure incidents. A Canadian biosafety guideline describing notification and reporting procedures is also available.

Sources/specimens

Biological samples that may contain A. actinomycetemcomitans include dental plaque, salivaFootnote 61Footnote 62, cardiac tissueFootnote 62Footnote 63, and human bloodFootnote 6.

Primary hazards

Exposure of mucous membranes/skin to infectious material and autoinoculation with infectious material are the primary hazards associated with exposure to A. actinomycetemcomitansFootnote 18Footnote 63.

Special hazards

None.

Section VII - Exposure controls/personal protection

Risk group classification

A. actinomycetemcomitans is a Risk Group 2 Human Pathogen and a Risk Group 1 Animal PathogenFootnote 64.

Containment requirements

Containment Level 2 facilities, equipment, and operational practices outlined in the Canadian Biosafety Standard for work involving infectious or potentially infectious materials, animals, or cultures.

Protective clothing

The applicable Containment Level 2 requirements for personal protective equipment and clothing outlined in the Canadian Biosafety Standard are to be followed. The personal protective equipment could include the use of a labcoat and dedicated footwear (e.g., boots, shoes) or additional protective footwear (e.g., boot or shoe covers) where floors may be contaminated (e.g., animal cubicles, PM rooms), gloves when direct skin contact with infected materials or animals is unavoidable, and eye protection where there is a known or potential risk of exposure to splashes.

Note: A local risk assessment will identify the appropriate hand, foot, head, body, eye/face, and respiratory protection, and the personal protective equipment requirements for the containment zone and work activities must be documented.

Other precautions

A biological safety cabinet (BSC) or other primary containment devices to be used for activities with open vessels, based on the risks associated with the inherent characteristics of the regulated material, the potential to produce infectious aerosols or aerosolized toxins, the handling of high concentrations of regulated materials, or the handling of large volumes of regulated materials.

Use of needles and syringes are to be strictly limited. Bending, shearing, re-capping, or removing needles from syringes to be avoided, and if necessary, performed only as specified in standard operating procedures (SOPs). Additional precautions are required with work involving animals or large-scale activities.

For diagnostic laboratories handling primary specimens that may contain A. actinomycetemcomitans, the following resources may be consulted:

Section VIII - Handling and storage

Spills

Allow aerosols to settle. Wearing personal protective equipment, gently cover the spill with absorbent paper towel and apply suitable disinfectant, starting at the perimeter and working towards the centre. Allow sufficient contact time before clean up (Canadian Biosafety Handbook).

Disposal

All materials/substances that have come in contact with the regulated materials should be completely decontaminated before they are removed from the containment zone or standard operating procedures (SOPs) to be in place to safely and securely move or transport waste out of the containment zone to a designated decontamination area/third party. This can be achieved by using decontamination technologies and processes that have been demonstrated to be effective against the regulated material, such as chemical disinfectants, autoclaving, irradiation, incineration, an effluent treatment system, or gaseous decontamination (Canadian Biosafety Handbook).

Storage

The applicable Containment Level 2 requirements for storage outlined in the Canadian Biosafety Standard are to be followed. Primary containers of regulated materials removed from the containment zone to be labelled, leakproof, impact resistant, and kept either in locked storage equipment or within an area with limited access.

Section IX - Regulatory and other information

Canadian regulatory information

Controlled activities with A. actinomycetemcomitans require a Human Pathogens and Toxins licence issued by the Public Health Agency of Canada.

The following is a non-exhaustive list of applicable designations, regulations, or legislations:

Last file update

September, 2023

Prepared by

Centre for Biosecurity, Public Health Agency of Canada.

Disclaimer

The scientific information, opinions, and recommendations contained in this Pathogen Safety Data Sheet have been developed based on or compiled from trusted sources available at the time of publication. Newly discovered hazards are frequent and this information may not be completely up to date. The Government of Canada accepts no responsibility for the accuracy, sufficiency, or reliability or for any loss or injury resulting from the use of the information.

Persons in Canada are responsible for complying with the relevant laws, including regulations, guidelines and standards applicable to the import, transport, and use of pathogens in Canada set by relevant regulatory authorities, including the Public Health Agency of Canada, Health Canada, Canadian Food Inspection Agency, Environment and Climate Change Canada, and Transport Canada. The risk classification and related regulatory requirements referenced in this Pathogen Safety Data Sheet, such as those found in the Canadian Biosafety Standard, may be incomplete and are specific to the Canadian context. Other jurisdictions will have their own requirements.

Copyright © Public Health Agency of Canada, 2023, Canada

References

Footnote 1

Raja, M., F. Ummer, and C. P. Dhivakar. 2014. Aggregatibacter Actinomycetemcomitans - A Tooth Killer? J. Clin. Diagn. Res. 8(8):ZE13-6.

Return to footnote 1 referrer

Footnote 2

Parte, A. C., J. Sarda Carbasse, J. P. Meier-Kolthoff, L. C. Reimer, and M., Goker. 2020. List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int. J. Syst. Evol. Microbiol. 70:5607-5612.

Return to footnote 2 referrer

Footnote 3

Henderson, B., and D. Ready. 2006. Actinobacillus actinomycetemcomitans, p. 273-279. Anonymous Principles and Practice of Clinical Bacteriology. John Wiley & Sons, Ltd.

Return to footnote 3 referrer

Footnote 4

Malik, R., R. Changela, P. Krishan, S. Gugnani, and D. Bali. 2015. Virulence factors of Aggregatibacter actinomycetemcomitans-A status update. J. Int. Clin. Dent. Res. Organ. 7:137-145.

Return to footnote 4 referrer

Footnote 5

May, A. C., R. L. Ehrlich, S. Balashov, G. D. Ehrlich, M. Shanmugam, D. H. Fine, N. Ramasubbu, J. C. Mell, and C. Cugini. 2016. Complete Genome Sequence of Aggregatibacter actinomycetemcomitans Strain IDH781. Genome Announc. 4:e01285-16.

Return to footnote 5 referrer

Footnote 6

Taylor, S. L., and S. D. R. Lang. Aggregatibacter actinomycetemcomitans (Actinobacillus actinomycetemcomitans). 2017: Available at http://www.antimicrobe.org/b72.asp.

Return to footnote 6 referrer

Footnote 7

Kesić, L., M. Petrović, R. Obradović, and A. Pejčić. 2009. The Importance of Aggregatibacter Actinomycetemcomitans in Etiology of Periodontal Disease - Mini Review. Clinic for Stomatology. January 18, 2017-35-37.

Return to footnote 7 referrer

Footnote 8

Nørskov-Lauritsen, N., R. Claesson, A. Birkeholm Jensen, C. H. Åberg, and D. Haubek. 2019. Aggregatibacter Actinomycetemcomitans: Clinical Significance of a Pathobiont Subjected to Ample Changes in Classification and Nomenclature. Pathogens. 8:243.

Return to footnote 8 referrer

Footnote 9

Samaranayake, L. 2012. Oral Microbiology, p. 267. A. Taylor and C. McMurray (eds.), Essential Microbiology for Dentistry, Fourth ed., Elsevier.

Return to footnote 9 referrer

Footnote 10

Åberg, C. H., P. Kelk, and A. Johansson. 2015. Aggregatibacter actinomycetemcomitans: Virulence of its leukotoxin and association with aggressive periodontitis. Virulence. 6:188-195.

Return to footnote 10 referrer

Footnote 11

Henderson, B., M. Wilson, L. Sharp, and J. M. Ward. 2002. Actinobacillus actinomycetemcomitans. J. Med. Microbiol. 51:1013-1020.

Return to footnote 11 referrer

Footnote 12

Sriraman, P., R. Mohanraj, and P. Neelakantan. 2014. Aggregatibacter actinomyctemcomitans Periodontal Disease. RJPBCS. 5:406-419.

Return to footnote 12 referrer

Footnote 13

Rylev, M., and M. Kilian. 2008. Prevalence and distribution of principal periodontal pathogens worldwide. J. Clin. Periodontol. 35:346-361.

Return to footnote 13 referrer

Footnote 14

Torrungruang, K., S. Jitpakdeebordin, O. Charatkulangkun, and Y. Gleebbua. 2015. Porphyromonas gingivalis, aggregatibacter actinomycetemcomitans, and treponema denticola/prevotella intermedia co-infection are associated with severe periodontitis in a thai population. PLoS ONE. 10:(8):e0136646.

Return to footnote 14 referrer

Footnote 15

Cho, C., H. You, and S. Jeong. 2011. The clinical assessment of aggressive periodontitis patients. Journal of Periodontal & Implant Science. 41:143-148.

Return to footnote 15 referrer

Footnote 16

Gholizadeh, P., A. Pormohammad, H. Eslami, B. Shokouhi, V. Fakhrzadeh, and H. S. Kafil. 2017. Oral pathogenesis of Aggregatibacter actinomycetemcomitans. Microbial Pathogenesis. 113:303-311.

Return to footnote 16 referrer

Footnote 17

Paturel, L., J. P. Casalta, G. Habib, M. Nezri, and D. Raoult. 2004. Actinobacillus actinomycetemcomitans endocarditis. Clinical Microbiology and Infection. 10:98-118.

Return to footnote 17 referrer

Footnote 18

van Winkelhoff, A. J., and J. Slots. 1999. Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis in nonoral infections. Periodontol. 2000. 20:122-135.

Return to footnote 18 referrer

Footnote 19

Yukihira, N., H. Hori, T. Yamashita, A. Kawamura, T. Fukuchi, and H. Sugawara. 2021. Spontaneous Pyogenic Spondylitis and Possible Infective Endocarditis Caused by Aggregatibacter actinomycetemcomitans. Intern. Med. 60:1621-1625. doi: 10.2169/internalmedicine.5103-20.

Return to footnote 19 referrer

Footnote 20

Wang, C., H. Wang, J. Li, J. Wang, K. Yang, Y. Ho, P. Lin, L. Lee, C. Yu, P. Yang, and P. Hsueh. 2010. Invasive infections of Aggregatibacter (Actinobacillus) actinomycetemcomitans. J. Microbiol. Immunol. Infect. 43:491-497.

Return to footnote 20 referrer

Footnote 21

Mesturino, M. A., C. Bitetti, A. Clemente, A. Krzysztofiak, L. Lancella, R. Lombardi, L. Cursi, E. Boccuzzi, A. M. Musolino, and A. Villani. 2023. Aggregatibacter actinomycetemcomitans infection in a 15-year-old boy with pulmonary empyema: a case report and review of literature. Italian Journal of Pediatrics. 49:42.

Return to footnote 21 referrer

Footnote 22

Rubin, L. G. 2012. Other Gram-Negative Coccobacilli, p. 967. S. S. Long, L. K. Pickering, and C. G. Prober (eds.), Principles and practice of pediatric infectious diseases. Elsevier Churchill Livingstone, Edinburgh; New York.

Return to footnote 22 referrer

Footnote 23

Binder, M. I., J. Chua, P. K. Kaiser, N. Mehta, and C. M. Isada. 2003. Actinobacillus actinomycetemcomitans Endogenous Endophthalmitis: Report of Two Cases and Review of the Literature. Scand. J. Infect. Dis. 35:133-136.

Return to footnote 23 referrer

Footnote 24

Sharma, K., P. Mudgil, J. S. Whitehall, and I. Gosbell. 2017. Aggregatibacter actinomycetemcomitans osteomyelitis in a 12 year old boy: case report emphasizing the importance of tissue culture, and review of literature. Ann. Clin. Microbiol. Antimicrob. 16:12.

Return to footnote 24 referrer

Footnote 25

Huang, X., M. Xie, X. Lu, F. Mei, W. Song, Y. Liu, and L. Chen. 2023. The Roles of Periodontal Bacteria in Atherosclerosis. International Journal of Molecular Sciences. 24:12861.

Return to footnote 25 referrer

Footnote 26

Özavci, V., G. Erbas, U. Parin, H. T. Yüksel, and Ş Kirkan. 2019. Molecular detection of feline and canine periodontal pathogens. Veterinary and Animal Science. 8:100069.

Return to footnote 26 referrer

Footnote 27

Beighton, D., N. S. Taichman, D. L. Simpson, J. M. Dirienzo, and N. W. Johnson. 1989. Intra-oral colonization of macaque monkeys by Actinobacillus actinomycetemcomitans. Oral Microbiol. Immunol. 4:35-40.

Return to footnote 27 referrer

Footnote 28

Petersen, P. E., D. Bourgeois, H. Ogawa, S. Estupinan-Day, and C. Ndiaye. 2005. The global burden of oral diseases and risks to oral health. Bull. World Health Organ. 83:661-669.

Return to footnote 28 referrer

Footnote 29

Kassebaum, N. J., E. Bernabe, M. Dahiya, B. Bhandari, C. J. Murray, and W. Marcenes. 2014. Global burden of severe periodontitis in 1990-2010: a systematic review and meta-regression. J. Dent. Res. 93:1045-1053.

Return to footnote 29 referrer

Footnote 30

Susin, C., A. N. Haas, and J. M. Albandar. 2014. Epidemiology and demographics of aggressive periodontitis. Periodontol. 2000. 65:27-45.

Return to footnote 30 referrer

Footnote 31

Brígido, J. A., V. R. da Silveira, R. O. Rego, and N. A. Nogueira. 2014. Serotypes of Aggregatibacter actinomycetemcomitans in relation to periodontal status and geographic origin of individuals-a review of the literature. Med. Oral Patol. Oral Cir. Bucal. 19:184-191.

Return to footnote 31 referrer

Footnote 32

Kwamin, F., R. Gref, D. Haubek, and A. Johansson. 2012. Interactions of extracts from selected chewing stick sources with Aggregatibacter actinomycetemcomitans. BMC Res. Notes. 5:203.

Return to footnote 32 referrer

Footnote 33

Mehta, J., C. Eaton, M. AlAmri, G. Lin, and L. Nibali. 2023. The association between Aggregatibacter actinomycetemcomitans JP2 clone and periodontitis: A systematic review and meta-analysis. J Periodont Res. 58:465-482.

Return to footnote 33 referrer

Footnote 34

Jia, R., R. Shi, D. Guan, Y. Wu, and W. Qian. 2022. Lactobacillus helveticus Prevents Periodontitis Induced by Aggregatibacter actinomycetemcomitans in Rats by Regulating β-Defensins. Comput. Math. Methods Med. 2022:4968016.

Return to footnote 34 referrer

Footnote 35

Xu, B., and D. Li. 2003. Infection characters of Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis in immunodeficient guinea pigs. Hua. Xi Kou Qiang Yi Xue Za Zhi. 21:13-15

Return to footnote 35 referrer

Footnote 36

Beighton, D., N. S. Taichman, D. L. Simpson, J. M. Dirienzo, and N. W. Johnson. 1989. Intra-oral colonization of macaque monkeys by Actinobacillus actinomycetemcomitans. Oral Microbiol. Immunol. 4:35-40.

Return to footnote 36 referrer

Footnote 37

Balasouli, C., S. Fragkou, A. Argyropoulou, O. Tsuzukibashi, G. Menexes, N. Kotsanos, and S. Kalfas. 2015. Aggregatibacter actinomycetemcomitans (Aa) in Dental Plaque of Greek Children. Prevalence, Serotype Distribution and Transmission between Mothers and Children. Arch. Clin. Microbiol. 6:1-7.

Return to footnote 37 referrer

Footnote 38

Van Winkelhoff, A. J., and K. Boutaga. 2005. Transmission of periodontal bacteria and models of infection. J. Clin. Periodontol. 32:16-27.

Return to footnote 38 referrer

Footnote 39

Limeres Posse, J., P. Diz Dios, and C. Scully. 2017. Chapter 2 - Oral Bacteria Transmissible by Saliva and Kissing, p. 19-28. J. L. Posse, P. D. Dios, and C. Scully (eds.), Saliva Protection and Transmissible Diseases. Academic Press.

Return to footnote 39 referrer

Footnote 40

Asikainen, S., and C. Chen. 1999. Oral ecology and person-to-person transmission of Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis. Periodontol. 2000. 20:65-81.

Return to footnote 40 referrer

Footnote 41

Li, Z., J. Madeo, S. Ahmed, A. Vidal, A. Makaryus, J. Mejia, and T. Yasmin. 2013. Permanent pacemaker-associated actinomycetemcomitans endocarditis: A case report. Germs. 3:96-101.

Return to footnote 41 referrer

Footnote 42

Muller, H. -., H. -. Muller, D. E. Lange, and R. F. Muller. 1989. Actinobacillus actinomycetemcomitans contamination of toothbrushes from patients harbouring the organism. J. Clin. Periodontol. 16:388-390.

Return to footnote 42 referrer

Footnote 43

Choi, H. N., K. Park, S. Park, J. Kim, H. J. Kang, J. H. Park, and M. S. Lee. 2017. Prosthetic Valve Endocarditis caused by HACEK Organisms: a Case Report and Systematic Review of the Literature. Infect Chemother. 49:282-285.

Return to footnote 43 referrer

Footnote 44

Coburn, B., B. Toye, P. Rawte, F. B. Jamieson, D. J. Farrell, and S. N. Patel. 2013. Antimicrobial susceptibilities of clinical isolates of HACEK organisms. Antimicrob. Agents Chemother. 57:1989-1991.

Return to footnote 44 referrer

Footnote 45

Zbinden, R. 2015. Aggregatibacter, Capnocytophaga, Eikenella, Kingella, Pasteurella, and Other Fastidious or Rarely Encountered Gram-Negative Rods, p. 652. J. H. Jorgensen, M. A. Pfaller, K. C. Carroll, G. Funke, M. L. Landry, S. S. Richter, and D. W. Warnock (eds.), Manual of Clinical Microbiology, Eleventh Edition. American Society of Microbiology.

Return to footnote 45 referrer

Footnote 46

Wang, C. Y., H. C. Wang, J. M. Li, J. Y. Wang, K. C. Yang, Y. K. Ho, P. Y. Lin, L. N. Lee, C. J. Yu, P. C. Yang, and P. R. Hsueh. 2010. Invasive infections of Aggregatibacter (Actinobacillus) actinomycetemcomitans. J. Microbiol. Immunol. Infect. 43:491-497.

Return to footnote 46 referrer

Footnote 47

Veloo, A. C., K. Seme, E. Raangs, P. Rurenga, Z. Singadji, G. Wekema-Mulder, and A. J. van Winkelhoff. 2012. Antibiotic susceptibility profiles of oral pathogens. Int. J. Antimicrob. Agents. 40:450-454.

Return to footnote 47 referrer

Footnote 48

Ardila, C., J. Bedoya-García, and D. Arrubla-Escobar. 2022. Antibiotic resistance in periodontitis patients: A systematic scoping review of randomized clinical trials. Oral Dis.

Return to footnote 48 referrer

Footnote 49

Oettinger-Barak, O., S. G. Dashper, D. V. Catmull, G. G. Adams, M. N. Sela, E. E. Machtei, and E. C. Reynolds. 2013. Antibiotic susceptibility of Aggregatibacter actinomycetemcomitans JP2 in a biofilm. Journal of Oral Microbiology. 5:10.3402/jom.v5i0.20320.

Return to footnote 49 referrer

Footnote 50

van Winkelhoff, A. J., P. Rurenga, Z. Singadji, and G. Wekema-Mulder. 2014. Metronidazole and amoxicillin susceptibility of Aggregatibacter actinomycetemcomitans. Int. J. Antimicrob. Agents. 43:475-476.

Return to footnote 50 referrer

Footnote 51

Pavicic, M. J., A. J. van Winkelhoff, Y. A. Pavicic-Temming, and J. de Graaff. 1994. Amoxycillin causes an enhanced uptake of metronidazole in Actinobacillus actinomycetemcomitans: a mechanism of synergy. J. Antimicrob. Chemother. 34:1047-1050.

Return to footnote 51 referrer

Footnote 52

Kadkhoda, Z., Z. Amarlu, S. Eshraghi, and N. Samiei. 2016. Antimicrobial effect of chlorhexidine on Aggregatibacter actinomycetemcomitans biofilms associated with peri-implantitis. J. Dent. Res. Dent. Clin. Dent. Prospects. 10:176-180.

Return to footnote 52 referrer

Footnote 53

Shakeri, S., R. K. Kermanshahi, M. M. Moghaddam, and G. Emtiazi. 2007. Assessment of biofilm cell removal and killing and biocide efficacy using the microtiter plate test. Biofouling. 23:79-86.

Return to footnote 53 referrer

Footnote 54

Rodriguez Ferri, E. F., S. Martinez, R. Frandoloso, S. Yubero, and C. B. Gutierrez Martin. 2010. Comparative efficacy of several disinfectants in suspension and carrier tests against Haemophilus parasuis serovars 1 and 5. Res. Vet. Sci. 88:385-389.

Return to footnote 54 referrer

Footnote 55

Gutierrez, C. B., J. I. Rodriguez Barbosa, J. Suarez, O. R. Gonzalez, R. I. Tascon, and E. F. Rodriguez Ferri. 1995. Efficacy of a variety of disinfectants against Actinobacillus pleuropneumoniae serotype 1. Am. J. Vet. Res. 56:1025-1029.

Return to footnote 55 referrer

Footnote 56

Cieplik, F., A. Spath, C. Leibl, A. Gollmer, J. Regensburger, L. Tabenski, K. A. Hiller, T. Maisch, and G. Schmalz. 2014. Blue light kills Aggregatibacter actinomycetemcomitans due to its endogenous photosensitizers. Clin. Oral Investig. 18:1763-1769.

Return to footnote 56 referrer

Footnote 57

Afrasiabi, S., H. R. Barikani, and N. Chiniforush. 2022. Comparison of bacterial disinfection efficacy using blue and red lights on dental implants contaminated with Aggregatibacter actinomycetemcomitans. Photodiagnosis and Photodynamic Therapy. 40:103178.

Return to footnote 57 referrer

Footnote 58

Shimada, T., N. Sugano, R. Nishihara, K. Suzuki, H. Tanaka, and K. Ito. 2008. Differential effects of five Aggregatibacter actinomycetemcomitans strains on gingival epithelial cells. Oral Microbiol. Immunol. 23:455-458.

Return to footnote 58 referrer

Footnote 59

Nørskov-Lauritsen, N. 2014. Classification, identification, and clinical significance of Haemophilus and Aggregatibacter species with host specificity for humans. Clin. Microbiol. Rev. 27:214-240.

Return to footnote 59 referrer

Footnote 60

Nakao, R., S. Hirayama, T. Yamaguchi, H. Senpuku, H. Hasegawa, T. Suzuki, Y. Akeda, and M. Ohnishi. 2023. A bivalent outer membrane vesicle-based intranasal vaccine to prevent infection of periodontopathic bacteria. Vaccine. 41:4369-4383.

Return to footnote 60 referrer

Footnote 61

Paju, S., P. J. Pussinen, L. Suominen-Taipale, M. Hyvonen, M. Knuuttila, and E. Kononen. 2009. Detection of multiple pathogenic species in saliva is associated with periodontal infection in adults. J. Clin. Microbiol. 47:235-238.

Return to footnote 61 referrer

Footnote 62

Bozdogan, E., N. Topcuoglu, G. Cetin, I. Haberal, G. Kulekci, and O. Aktoren. 2016. Presence of Aggregatibacter actinomycetemcomitans in saliva and cardiac tissue samples of children with congenital heart disease. Indian J. Dent. Res. 27:637-642.

Return to footnote 62 referrer

Footnote 63

Nakano, K., H. Nemoto, R. Nomura, H. Inaba, H. Yoshioka, K. Taniguchi, A. Amano, and T. Ooshima. 2009. Detection of oral bacteria in cardiovascular specimens. Oral Microbiol. Immunol. 24:64-68.

Return to footnote 63 referrer

Footnote 64

Public Health Agency of Canada. 2015. Human Pathogens and Toxins Act (HPTA). 2016:.

Return to footnote 64 referrer

Page details

2025-08-14