Human herpesvirus 6A, 6B and 7: Infectious substances pathogen safety data sheet
Section I – Infectious agent
Name
Human betaherpesvirus 6A, 6B, and 7
Agent type
Virus
Taxonomy
Family
Orthoherpesviridae
Genus
Roseolovirus
Species
Roseolovirus humanbeta6a, Roseolovirus humanbeta6b, Roseolovirus humanbeta7
Synonym or cross-reference
Human betaherpesvirus 6 (HHV-6) collectively refers to the 6A and 6B variantsFootnote 1. HHV-6 was previously designated as human B-lymphotropic virusFootnote 2. Also known as roseolovirus, roseola infantum, exanthema subitum, and sixth diseaseFootnote 3Footnote 4.
Characteristics
Brief description
Human betaherpesvirus 6A (HHV-6A), human betaherpesvirus 6B (HHV-6B), and human betaherpesvirus 7 (HHV-7) are enveloped, double-stranded DNA viruses, 150 to 200 nm in diameterFootnote 5. Herpesviruses are made of four main components: the genome, capsid, tegument, and envelope. The tegument contains thousands of protein and RNA molecules surrounding the icosahedral capsid and is contained within the viral envelopeFootnote 6. Genomes of HHV-6 and HHV-7 are 159-162 kb and 145-153 kbp in size, respectivelyFootnote 5Footnote 7. The overall G+C content of both HHV-6 and HHV-7 are 43%Footnote 8. HHV-6 (A and B) and HHV-7 have telomere-like repeats that flank the ends of the genome to facilitate its integration into the telomeric region of host chromosomal DNA during latencyFootnote 7Footnote 9Footnote 10.
Properties
HHV-6 (A and B) and HHV-7 have a biphasic life cycle. Latency for HHV-6 involves integration of viral DNA into host chromosomal DNA. During latency, viral and host DNA is passed down to host daughter cells without infectious virus production. Integration of HHV-6 (A and B) DNA into germline cells enables the virus to be passed down to progeny, referred to as inherited chromosomally integrated HHV-6 (iciHHV-6)Footnote 11. For these individuals, every nucleated cell in the body contains a copy of the HHV-6 (A or B) genomeFootnote 7. HHV-6 establishes latent infection in peripheral blood mononuclear cells, while HHV-7 establishes latent infection in CD4+ lymphocytesFootnote 5Footnote 12. Upon reactivation, the HHV-6 (A and B) and HHV-7 revert to the lytic cycle in tissues, in which viruses are actively produced. During the lytic cycle, the host may or may not be symptomatic.
HHV-6 (A and B) and HHV-7 are lymphotropic viruses that have a predilection for CD4+ T lymphocytesFootnote 1. HHV-6A uses cellular receptor CD46, whereas HHV-6B primarily uses CD134 and to a lesser extent CD46Footnote 1Footnote 7Footnote 13. HHV-6A and HHV-6B differ in their ability to infect other cell typesFootnote 1. HHV-7 infects CD4+ T lymphocytes and uses the CD4 receptorFootnote 5. Proteins encoded by HHV-6 and HHV-7 have immunomodulatory capacities to increase survival by evading the host immune response and changing the environment of the host cellFootnote 5.
HHV-6 (A and B) and HHV-7 have been found in many tissues of the body including the brainFootnote 14Footnote 15, eyeFootnote 16Footnote 17, bone marrowFootnote 5Footnote 18, lymphoid tissueFootnote 19Footnote 20, salivary glandsFootnote 21Footnote 22, lungsFootnote 23Footnote 24, gastrointestinal tractFootnote 25Footnote 26, and liverFootnote 27Footnote 28.
Section II – Hazard identification
Pathogenicity and toxicity
HHV-6A seems to largely cause asymptomatic primary infection in young childrenFootnote 5Footnote 29. HHV-6B and HHV-7 cause exanthema subitum, also known as roseola infantum, usually in children under 2 years of age. Primary HHV-7 infection tends to occur at a later age, with 75% of children being seropositive by age 5Footnote 3Footnote 4Footnote 30Footnote 31Footnote 32Footnote 33. Symptoms of HHV-6B- and HHV-7-associated exanthema subitum are clinically indistinguishable and generally include fever, febrile seizure, rhinorrhea, diarrhoea, and a maculopapular skin rash that persists for 1 to 4 daysFootnote 4Footnote 31Footnote 34Footnote 35. HHV-6B and HHV-7 infections may also be asymptomaticFootnote 30Footnote 35. Although infrequent, manifestations of HHV-6 (A and B) and HHV-7 may involve the central nervous system (CNS)Footnote 36Footnote 37Footnote 38. Neurological complications of HHV-6B and HHV-7 include encephalitis, meningoencephalitisFootnote 39, status epilepticusFootnote 40, convulsionsFootnote 31, motor and psychomotor impairment, and intellectual disabilities, with prevalence rates of neurological complications of up to 50%Footnote 41. HHV-6 infection has also been associated with brain tumoursFootnote 42.
HHV-6 encephalitis is associated with a mortality rate of approximately 20%, and survivors suffer significant morbidityFootnote 43. Sequelae in children with meningoencephalitis or encephalitis associated with HHV-6B infection include visual impairment, speech impairment, and paralysis on one side of the bodyFootnote 38Footnote 44.
Following primary infection, HHV-6 (A and B) and HHV-7 establish persistent latent infection. Reactivation of HHV-6B, HHV-7, and to a far lesser degree HHV-6A has been associated with many health conditions. Pityriasis rosea is a self-limiting skin condition that is related to HHV-6 and/or HHV-7 reactivationFootnote 45. Reactivation of HHV-7 has been associated with myocarditis in childrenFootnote 46, while reactivation of HHV-6B has been linked to dilated cardiomyopathy and cardiac dysfunctionFootnote 47Footnote 48. In some cases, HHV-6 and HHV-7 reactivation is associated with a rare and serious adverse drug reaction referred to as drug rash with eosinophilia and systemic symptoms (DRESS)Footnote 49Footnote 50Footnote 51. HHV-6 and HHV-7 reactivation is frequent in Kawasaki disease patientsFootnote 52. Reactivation of HHV-6A is associated with progressive multiple sclerosis and Hashimoto’s thyroiditisFootnote 53Footnote 54Footnote 55. HHV-6 (A and B) reactivation frequently occurs in ocular inflammatory diseasesFootnote 17. Reactivation of HHV-6A and HHV-7 has been associated with Alzheimer’s diseaseFootnote 56. Immunocompromised individuals are at higher risk for developing health conditions after reactivationFootnote 57.
HHV-6B and HHV-7 reactivate in approximately 30-60% of hematopoietic stem cell transplant (HSCT) recipients, and less frequently in solid organ transplant recipientsFootnote 5Footnote 13Footnote 58Footnote 59Footnote 60Footnote 61Footnote 62. HHV-6 reactivation in immunocompromised individuals, such as transplant recipients, is associated with encephalitis, and graft rejection in solid organ transplant patientsFootnote 58Footnote 63Footnote 64Footnote 65.
Epidemiology
HHV-6 (A and B) and HHV-7 are ubiquitous worldwide. Prevalence of HHV-6B and HHV-7 in adults is approximately 80-96% and 75-98%, respectivelyFootnote 66Footnote 67Footnote 68Footnote 69Footnote 70. Prevalence of HHV-6A varies widely according to regionFootnote 29Footnote 67Footnote 69. Due to the similar immunology response to testing, and a lack of serological assays to differentiate HHV-6A and HHV-6B, determining the prevalence of HHV-6A and HHV-6B in various populations is difficultFootnote 23. The vast majority of primary HHV-6 and HHV-7 infections occur in early childhood. Seroprevalence is over 75% for HHV-6 in children up to 2 years of ageFootnote 71. HHV-6 or HHV-7 are associated with approximately 32% of cases of acute encephalitis in childrenFootnote 72.
CNS involvement is more frequent when primary HHV-7 infection occurs in older childrenFootnote 73. Rare genetic disorders in otherwise healthy children may predispose them to encephalopathy during primary HHV-6B or HHV-7 infectionFootnote 38Footnote 74. Hematopoietic stem cell transplantation (HSCTs) are risk factors for HHV-6 and HHV-7-associated encephalitisFootnote 38Footnote 58. HHV-6 reactivation in HSCT patients was associated with poor clinical outcomes including decreased overall survival and increased incidence of acute graft-versus-host diseaseFootnote 59. HHV-6 reactivation is also commonly observed in pregnant women, and iciHHV-6 results in higher risk of pre-eclampsia in fetuses and spontaneous abortion in pregnant womenFootnote 75.
Outbreaks of HHV-6 infection were reported in Brazil between October and December 1997, infecting children aged less than 7 years old at daycare centers. Serum samples were collected from 401 of 730 children, and seroprevalence of HHV-6 was found to be 63.8%Footnote 76.
Host range
Natural host(s)
HumansFootnote 5.
Other host(s)
Non-human primates, rabbits, and mice have been experimentally infected with HHV-6 (A and B)Footnote 77Footnote 78Footnote 79Footnote 80.
Infectious dose
Unknown.
Incubation period
Incubation period is approximately 1 to 2 weeksFootnote 36.
Communicability
HHV-6 (A and B) and HHV-7 are found in human salivaFootnote 21Footnote 22Footnote 81. Person-to-person transmission is likely to occur primarily via saliva through close contact with mucous membranes in the nasopharynx and olfactory routesFootnote 82Footnote 83Footnote 84. HHV-6 (A and B) can also cause congenital infection via germline passage of chromosomally-integrated HHV-6 DNA and from transplacental passage of maternal HHV-6 infectionFootnote 11. Inherited-chromosomally-integrated HHV-6 (A and B) affects approximately 1% of infants and is the more common mode of in-utero transmissionFootnote 71Footnote 85. A case of HHV-7 congenital infection via germline passage of chromosomally-integrated HHV-7 has been reportedFootnote 9. There have been rare cases of HHV-6 transmission through organ transplantationFootnote 86.
Section III – Dissemination
Reservoir
HumansFootnote 5.
Zoonosis
None.
Vectors
None.
Section IV – Stability and viability
Drug susceptibility/resistance
Ganciclovir (valganciclovir), foscarnet, and cidofovir inhibit replication of HHV-6 (A and B) and HHV-7Footnote 5. Brincidofovir (CMX001) is a lipid-ester derivative effective against DNA viruses including HHV-6 (A and B) and HHV-7Footnote 5. HHV-6 is naturally resistant to acyclovir because the high concentrations required for HHV-6 inhibition is only achievable in vitro and not in vivoFootnote 87.
Susceptibility to disinfectants
Quaternary ammonium compounds, chlorhexidine (0.02%), rubbing alcohol (1:1 mixture), sodium hypochlorite (0.2%), alkaline glutaraldehyde (2%) are effective against herpesvirusesFootnote 88Footnote 89Footnote 90Footnote 91Footnote 92.
Physical inactivation
Herpesviruses are inactivated by heat (56°C for 10 minutes), pH less than 5 or greater than 11, and incubation under UV light (20 cm for 5 minutes)Footnote 90Footnote 93Footnote 94.
Survival outside host
When dried on inanimate surfaces, herpesviruses generally remain infective for less than one day at room temperature with relative humidity greater than 55%Footnote 95, but can persist for up to 8 weeks when relative humidity is lowFootnote 96. Herpesviruses can remain infective in water for up to 3 weeks under certain conditionsFootnote 97.
Section V – First aid/medical
Surveillance
HHV-6 (A and B) and HHV-7 nucleic acid can be detected in clinical specimens using PCRFootnote 98Footnote 99. However there is a need to distinguish between iciHHV-6/iciHHV-7, latent infection, and active infection (i.e., primary infection or reactivation) when viral nucleic acids are detected. To rule out iciHHV-6 or iciHHV-7, hair follicles or nails can be tested. Active HHV-6 infections usually have viral loads exceeding 1,000 DNA copies per mL of whole bloodFootnote 5Footnote 100. Active HHV-6 or HHV-7 infection can also be shown by quantifying viral mRNA using reverse transcriptase PCRFootnote 38. Primary HHV-6 or HHV-7 infections can be identified by measuring the increase in IgG antibody titer in serum at acute and convalescent phases of infection using immunofluorescent antibody assaysFootnote 5Footnote 33Footnote 101. Virus isolation in cell culture and antigen detection are other methods of directly detecting HHV-6 and HHV-7, however, these methods are not sensitive and are time-consumingFootnote 87.
Note: The specific recommendations for surveillance in the laboratory should come from the medical surveillance program, which is based on a local risk assessment of the pathogens and activities being undertaken, as well as an overarching risk assessment of the biosafety program as a whole. More information on medical surveillance is available in the Canadian Biosafety Handbook.
First aid/treatment
Primary HHV-6 (A and B) and HHV-7 infections are usually self-limitingFootnote 5Footnote 38. HHV-6 or HHV-7 infections with complications, such as encephalitis, can be treated using antiviral drugs including ganciclovir, foscarnet, and/or cidofovirFootnote 5Footnote 13Footnote 38. Virus-specific T cells have been used to treat HHV-6 infections in allogeneic hematopoietic stem cell transplant recipientsFootnote 102.
Note: The specific recommendations for first aid/treatment in the laboratory should come from the post-exposure response plan, which is developed as part of the medical surveillance program. More information on the post-exposure response plan can be found in the Canadian Biosafety Handbook.
Immunization
There is no vaccine against HHV-6 or HHV-7.
Note: More information on the medical surveillance program can be found in the Canadian Biosafety Handbook, and by consulting the Canadian Immunization Guide.
Prophylaxis
None.
Note: More information on prophylaxis as part of the medical surveillance program can be found in the Canadian Biosafety Handbook.
Section VI – Laboratory hazard
Laboratory-acquired infections
None reported.
Note: Please consult the Canadian Biosafety Standard and Canadian Biosafety Handbook for additional details on requirements for reporting exposure incidents. A Canadian biosafety guideline describing notification and reporting procedures is also available.
Sources/specimens
Clinical specimens include saliva, blood/plasma, cerebrospinal fluid, bone marrow, biopsy samples (e.g., brain, lung, skin, liver), urine, female reproductive tissues and genital secretionsFootnote 5Footnote 23Footnote 27Footnote 38Footnote 71Footnote 103.
Primary hazards
Inhalation of concentrated aerosolized infectious material, exposure of wounded skin or mucous membranes (e.g., eyes, nose, or mouth) to infectious material, and accidental autoinoculation with infectious materialFootnote 82Footnote 83Footnote 84.
Special hazards
None.
Section VII – Exposure controls/personal protection
Risk group classification
HHV-6 (A and B) and HHV-7 are Risk Group 2 Human Pathogens and Risk Group 1 Animal PathogensFootnote 104Footnote 105.
Containment requirements
Containment Level 2 facilities, equipment, and operational practices outlined in the Canadian Biosafety Standard for work involving infectious or potentially infectious materials, animals, or cultures.
Protective clothing
The applicable Containment Level 2 requirements for personal protective equipment and clothing outlined in the Canadian Biosafety Standard are to be followed. The personal protective equipment could include the use of a labcoat and dedicated footwear (e.g., boots, shoes) or additional protective footwear (e.g., boot or shoe covers) where floors may be contaminated (e.g., animal cubicles, PM rooms), gloves when direct skin contact with infected materials or animals is unavoidable, and eye protection where there is a known or potential risk of exposure to splashes.
Note: A local risk assessment will identify the appropriate hand, foot, head, body, eye/face, and respiratory protection, and the personal protective equipment requirements for the containment zone and work activities must be documented.
Other precautions
A biological safety cabinet (BSC) or other primary containment devices to be used for activities with open vessels, based on the risks associated with the inherent characteristics of the regulated material, the potential to produce infectious aerosols or aerosolized toxins, the handling of high concentrations of regulated materials, or the handling of large volumes of regulated materials.
Use of needles and syringes to be strictly limited. Bending, shearing, re-capping, or removing needles from syringes to be avoided, and if necessary, performed only as specified in standard operating procedures (SOPs). Additional precautions are required with work involving animals or large-scale activities.
For diagnostic laboratories handling primary specimens that may contain HHV 6 (A and B) or HHV-7, the following resources may be consulted:
Section VIII – Handling and storage
Spills
Allow aerosols to settle. Wearing personal protective equipment, gently cover the spill with absorbent paper towel and apply suitable disinfectant, starting at the perimeter and working towards the centre. Allow sufficient contact time before clean up (Canadian Biosafety Handbook ).
Disposal
All materials/substances that have come in contact with the regulated materials should be completely decontaminated before they are removed from the containment zone or standard operating procedures (SOPs) to be in place to safely and securely move or transport waste out of the containment zone to a designated decontamination area / third party. This can be achieved by using decontamination technologies and processes that have been demonstrated to be effective against the regulated material, such as chemical disinfectants, autoclaving, irradiation, incineration, an effluent treatment system, or gaseous decontamination (Canadian Biosafety Handbook ).
Storage
Containment Level 2: The applicable Containment Level 2 requirements for storage outlined in the Canadian Biosafety Standard are to be followed. Primary containers of regulated materials removed from the containment zone to be labelled, leakproof, impact resistant, and kept either in locked storage equipment or within an area with limited access.
Section IX – Regulatory and other information
Canadian regulatory information
Controlled activities with HHV-6 (A and B) and HHV-7 require a Human Pathogens and Toxins licence issued by the Public Health Agency of Canada.
The following is a non-exhaustive list of applicable designations, regulations, or legislations:
- Human Pathogen and Toxins Act and Human Pathogens and Toxins Regulations
- Transportation of Dangerous Goods Regulations
Last file update
September 2023
Prepared by
Centre for Biosecurity, Public Health Agency of Canada.
Disclaimer
The scientific information, opinions, and recommendations contained in this Pathogen Safety Data Sheet have been developed based on or compiled from trusted sources available at the time of publication. Newly discovered hazards are frequent and this information may not be completely up to date. The Government of Canada accepts no responsibility for the accuracy, sufficiency, or reliability or for any loss or injury resulting from the use of the information.
Persons in Canada are responsible for complying with the relevant laws, including regulations, directives and standards applicable to the import, transport, and use of pathogens and toxins in Canada set by relevant regulatory authorities, including the Public Health Agency of Canada, Health Canada, Canadian Food Inspection Agency, Environment and Climate Change Canada, and Transport Canada. The risk classification and related regulatory requirements referenced in this Pathogen Safety Data Sheet, such as those found in the Canadian Biosafety Standard, may be incomplete and are specific to the Canadian context. Other jurisdictions will have their own requirements.
Copyright © Public Health Agency of Canada, 2023, Canada
References
Footnotes
- Footnote 1
-
Ablashi, D., H. Agut, R. Alvarez-Lafuente, D. A. Clark, S. Dewhurst, D. DiLuca, L. Flamand, N. Frenkel, R. Gallo, U. A. Gompels, P. Hollsberg, S. Jacobson, M. Luppi, P. Lusso, M. Malnati, P. Medveczky, Y. Mori, P. E. Pellett, J. C. Pritchett, K. Yamanishi, and T. Yoshikawa. 2014. Classification of HHV-6A and HHV-6B as distinct viruses. Arch. Virol. 159:863-870.
- Footnote 2
-
Salahuddin, S. Z., D. V. Ablashi, P. D. Markham, S. F. Josephs, S. Sturzenegger, M. Kaplan, G. Halligan, P. Biberfeld, F. Wong-Staal, and B. Kramarsky. 1986. Isolation of a new virus, HBLV, in patients with lymphoproliferative disorders. Science. 234:596-601.
- Footnote 3
-
Tanaka, K., T. Kondo, S. Torigoe, S. Okada, T. Mukai, and K. Yamanishi. 1994. Human herpesvirus 7: another causal agent for roseola (exanthem subitum). J. Pediatr. 125:1-5.
- Footnote 4
-
Asano, Y., T. Yoshikawa, S. Suga, I. Kobayashi, T. Nakashima, T. Yazaki, Y. Kajita, and T. Ozaki. 1994. Clinical features of infants with primary human herpesvirus 6 infection (exanthem subitum, roseola infantum). Pediatrics. 93:104-108.
- Footnote 5
-
Agut, H., P. Bonnafous, and A. Gautheret-Dejean. 2016. Human Herpesviruses 6A, 6B, and 7. Microbiol. Spectr. 4:10.1128/microbiolspec.DMIH2-0007-2015.
- Footnote 6
-
Close, W. L., A. N. Anderson, and P. E. Pellett. 2018. Betaherpesvirus Virion Assembly and Egress. Adv. Exp. Med. Biol. 1045:167-207.
- Footnote 7
-
Pantry, S. N., and P. G. Medveczky. 2017. Latency, Integration, and Reactivation of Human Herpesvirus-6. Viruses. 9:10.3390/v9070194.
- Footnote 8
-
Dominguez, G., T. R. Dambaugh, F. R. Stamey, S. Dewhurst, N. Inoue, and P. E. Pellett. 1999. Human herpesvirus 6B genome sequence: coding content and comparison with human herpesvirus 6A. J Virol 73:8040-52.
- Footnote 9
-
Prusty, B. K., N. Gulve, S. Rasa, M. Murovska, P. C. Hernandez, and D. V. Ablashi. 2017. Possible chromosomal and germline integration of human herpesvirus 7. J. Gen. Virol. 98:266-274.
- Footnote 10
-
Thomson, B. J., S. Dewhurst, and D. Gray. 1994. Structure and heterogeneity of the a sequences of human herpesvirus 6 strain variants U1102 and Z29 and identification of human telomeric repeat sequences at the genomic termini. J. Virol. 68:3007-3014.
- Footnote 11
-
Hall, C. B., M. T. Caserta, K. C. Schnabel, L. M. Shelley, J. A. Carnahan, A. S. Marino, C. Yoo, and G. K. Lofthus. 2010. Transplacental congenital human herpesvirus 6 infection caused by maternal chromosomally integrated virus. J. Infect. Dis. 201:505-507.
- Footnote 12
-
Miyake, F., T. Yoshikawa, H. Sun, A. Kakimi, M. Ohashi, S. Akimoto, Y. Nishiyama, and Y. Asano. 2006. Latent infection of human herpesvirus 7 in CD4(+) T lymphocytes. J. Med. Virol. 78:112-116.
- Footnote 13
-
Zerr, D. M. 2018. Human Herpesvirus 6B in the Transplant Recipient: When to Worry, When to Act. J. Pediatric Infect. Dis. Soc. 7:S75-S78.
- Footnote 14
-
Chan, P. K., H. K. Ng, M. Hui, and A. F. Cheng. 2001. Prevalence and distribution of human herpesvirus 6 variants A and B in adult human brain. J. Med. Virol. 64:42-46.
- Footnote 15
-
Chapenko, S., S. Roga, S. Skuja, S. Rasa, M. Cistjakovs, S. Svirskis, Z. Zaserska, V. Groma, and M. Murovska. 2016. Detection frequency of human herpesviruses-6A, -6B, and -7 genomic sequences in central nervous system DNA samples from post-mortem individuals with unspecified encephalopathy. J. Neurovirol. 22:488-497.
- Footnote 16
-
Cohen, J. I., G. Fahle, M. A. Kemp, K. Apakupakul, and T. P. Margolis. 2010. Human herpesvirus 6-A, 6-B, and 7 in vitreous fluid samples. J. Med. Virol. 82:996-999.
- Footnote 17
-
Sugita, S., N. Shimizu, K. Watanabe, M. Ogawa, K. Maruyama, N. Usui, and M. Mochizuki. 2012. Virological analysis in patients with human herpes virus 6-associated ocular inflammatory disorders. Invest. Ophthalmol. Vis. Sci. 53:4692-4698.
- Footnote 18
-
Gautheret-Dejean, A., O. Dejean, L. Vastel, M. Kerboull, J. T. Aubin, M. Franti, and H. Agut. 2000. Human herpesvirus-6 and human herpesvirus-7 in the bone marrow from healthy subjects. Transplantation. 69:1722-1723.
- Footnote 19
-
Kempf, W., B. Muller, R. Maurer, V. Adams, and G. Campadelli Fiume. 2000. Increased expression of human herpesvirus 7 in lymphoid organs of AIDS patients. J. Clin. Virol. 16:193-201.
- Footnote 20
-
Roush, K. S., R. K. Domiati-Saad, L. R. Margraf, K. Krisher, R. H. Scheuermann, B. B. Rogers, and D. B. Dawson. 2001. Prevalence and cellular reservoir of latent human herpesvirus 6 in tonsillar lymphoid tissue. Am. J. Clin. Pathol. 116:648-654.
- Footnote 21
-
Aberle, S. W., C. W. Mandl, C. Kunz, and T. Popow-Kraupp. 1996. Presence of human herpesvirus 6 variants A and B in saliva and peripheral blood mononuclear cells of healthy adults. J. Clin. Microbiol. 34:3223-3225.
- Footnote 22
-
Magalhaes, I. M., R. V. Martins, J. J. Cossatis, R. M. Cavaliere, L. A. Afonso, N. Moyses, S. A. Oliveira, and S. M. Cavalcanti. 2010. Detection of human herpesvirus 6 and 7 DNA in saliva from healthy adults from Rio de Janeiro, Brazil. Mem. Inst. Oswaldo Cruz. 105:925-927.
- Footnote 23
-
Cone, R. W., M. L. Huang, R. C. Hackman, and L. Corey. 1996. Coinfection with human herpesvirus 6 variants A and B in lung tissue. J. Clin. Microbiol. 34:877-881.
- Footnote 24
-
Yamamoto, K., T. Yoshikawa, S. Okamoto, K. Yamaki, K. Shimokata, and Y. Nishiyama. 2005. HHV-6 and 7 DNA loads in lung tissues collected from patients with interstitial pneumonia. J. Med. Virol. 75:70-75.
- Footnote 25
-
Sasaki, M., N. Shimizu, Y. Zushi, T. Saito, H. Tsunemine, K. Itoh, Y. Aoyama, Y. Goto, T. Kodaka, G. Tsuji, E. Senda, T. Fujimori, T. Itoh, and T. Takahashi. 2018. Analysis of gastrointestinal virus infection in immunocompromised hosts by multiplex virus PCR assay. AIMS Microbiol. 4:225-239.
- Footnote 26
-
Lempinen, M., L. Halme, J. Arola, E. Honkanen, K. Salmela, and I. Lautenschlager. 2012. HHV-6B is frequently found in the gastrointestinal tract in kidney transplantation patients. Transpl. Int. 25:776-782.
- Footnote 27
-
Ozaki, Y., H. Tajiri, K. Tanaka-Taya, S. Mushiake, A. Kimoto, K. Yamanishi, and S. Okada. 2001. Frequent detection of the human herpesvirus 6-specific genomes in the livers of children with various liver diseases. J. Clin. Microbiol. 39:2173-2177.
- Footnote 28
-
Rauber, C., K. Bartelheimer, T. Zhou, C. Rupp, P. Schnitzler, P. Schemmer, P. Sauer, K. H. Weiss, and D. N. Gotthardt. 2019. Prevalence of human herpesviruses in biliary fluid and their association with biliary complications after liver transplantation. BMC Gastroenterol. 19:110-019-1033-x.
- Footnote 29
-
Bates, M., M. Monze, H. Bima, M. Kapambwe, D. Clark, F. C. Kasolo, and U. A. Gompels. 2009. Predominant human herpesvirus 6 variant A infant infections in an HIV-1 endemic region of Sub-Saharan Africa. J. Med. Virol. 81:779-789.
- Footnote 30
-
Caserta, M. T., C. B. Hall, K. Schnabel, C. E. Long, and N. D'Heron. 1998. Primary human herpesvirus 7 infection: a comparison of human herpesvirus 7 and human herpesvirus 6 infections in children. J. Pediatr. 133:386-389.
- Footnote 31
-
Tesini, B. L., L. G. Epstein, and M. T. Caserta. 2014. Clinical impact of primary infection with roseoloviruses. Curr. Opin. Virol. 9:91-96.
- Footnote 32
-
Hall, C. B., M. T. Caserta, K. C. Schnabel, M. P. McDermott, G. K. Lofthus, J. A. Carnahan, L. M. Gilbert, and S. Dewhurst. 2006. Characteristics and acquisition of human herpesvirus (HHV) 7 infections in relation to infection with HHV-6. J. Infect. Dis. 193:1063-1069.
- Footnote 33
-
Ward, K. N., N. J. Andrews, C. M. Verity, E. Miller, and E. M. Ross. 2005. Human herpesviruses-6 and -7 each cause significant neurological morbidity in Britain and Ireland. Arch. Dis. Child. 90:619-623.
- Footnote 34
-
Laina, I., V. P. Syriopoulou, G. L. Daikos, E. S. Roma, F. Papageorgiou, T. Kakourou, and M. Theodoridou. 2010. Febrile seizures and primary human herpesvirus 6 infection. Pediatr. Neurol. 42:28-31.
- Footnote 35
-
Zerr, D. M., A. S. Meier, S. S. Selke, L. M. Frenkel, M. L. Huang, A. Wald, M. P. Rhoads, L. Nguy, R. Bornemann, R. A. Morrow, and L. Corey. 2005. A population-based study of primary human herpesvirus 6 infection. N. Engl. J. Med. 352:768-776.
- Footnote 36
-
De Bolle, L., L. Naesens, and E. De Clercq. 2005. Update on human herpesvirus 6 biology, clinical features, and therapy. Clin. Microbiol. Rev. 18:217-245.
- Footnote 37
-
Torigoe, S., T. Kumamoto, W. Koide, K. Taya, and K. Yamanishi. 1995. Clinical manifestations associated with human herpesvirus 7 infection. Arch. Dis. Child. 72:518-519.
- Footnote 38
-
Ongradi, J., D. V. Ablashi, T. Yoshikawa, B. Stercz, and M. Ogata. 2017. Roseolovirus-associated encephalitis in immunocompetent and immunocompromised individuals. J. Neurovirol. 23:1-19.
- Footnote 39
-
Ishiguro, N., S. Yamada, T. Takahashi, Y. Takahashi, T. Togashi, T. Okuno, and K. Yamanishi. 1990. Meningo-encephalitis associated with HHV-6 related exanthem subitum. Acta Paediatr. Scand. 79:987-989.
- Footnote 40
-
Epstein, L. G., S. Shinnar, D. C. Hesdorffer, D. R. Nordli, A. Hamidullah, E. K. Benn, J. M. Pellock, L. M. Frank, D. V. Lewis, S. L. Moshe, R. C. Shinnar, S. Sun, and FEBSTAT study team. 2012. Human herpesvirus 6 and 7 in febrile status epilepticus: the FEBSTAT study. Epilepsia. 53:1481-1488.
- Footnote 41
-
Eliassen, E., C. C. Hemond, and J. D. Santoro. 2020. HHV-6-Associated Neurological Disease in Children: Epidemiologic, Clinical, Diagnostic, and Treatment Considerations. Pediatric Neurology 105:10-20.
- Footnote 42
-
Ghorbani, S., A. Letafati, A. Khatami, R. Farzi, S. Shabani, P. Moradi, V. Tambrchi, H. Saadati, S. Papizadeh, M. V. Rad, R. Tabatabaei, S. Bahadory, A. Tavakoli, F. Bokharaei-Salim, S. H. Monavari, M. Fatemipour, M. Hoseini, and S. J. Kiani. 2022. Association between human herpesvirus-6 and primary brain tumors: a systematic review and meta-analysis. Future Virology 17:305-314.
- Footnote 43
-
Victoria, N. C., T. L. Phan, and K. A. Agarwal. 2020. A Systematic Review of Sodium Disorders in HHV-6 Encephalitis. Biol Blood Marrow Transplant 26:1034-1039.
- Footnote 44
-
Bozzola, E., A. Krzysztofiak, M. Bozzola, V. Calcaterra, A. Quondamcarlo, L. Lancella, and A. Villani. 2012. HHV6 meningoencephalitis sequelae in previously healthy children. Infection. 40:563-566.
- Footnote 45
-
Watanabe, T., T. Kawamura, S. E. Jacob, E. A. Aquilino, J. M. Orenstein, J. B. Black, and A. Blauvelt. 2002. Pityriasis rosea is associated with systemic active infection with both human herpesvirus-7 and human herpesvirus-6. J. Invest. Dermatol. 119:793-797.
- Footnote 46
-
Ozdemir, R., M. Kucuk, and S. E. Dibeklioglu. 2018. Report of a Myocarditis Outbreak among Pediatric Patients: Human Herpesvirus 7 as a Causative Agent? J. Trop. Pediatr. 64:468-471.
- Footnote 47
-
Comar, M., P. D'Agaro, C. Campello, A. Poli, J. P. Breinholt 3rd, J. A. Towbin, and M. Vatta. 2009. Human herpes virus 6 in archival cardiac tissues from children with idiopathic dilated cardiomyopathy or congenital heart disease. J. Clin. Pathol. 62:80-83.
- Footnote 48
-
Escher, F., U. Kuhl, U. Gross, D. Westermann, W. Poller, C. Tschope, D. Lassner, and H. P. Schultheiss. 2015. Aggravation of left ventricular dysfunction in patients with biopsy-proven cardiac human herpesvirus A and B infection. J. Clin. Virol. 63:1-5.
- Footnote 49
-
Johnson, S., S. Mathews, and S. D. Hudnall. 2017. Human herpesvirus 6 lymphadenitis in drug rash with eosinophilia and systemic symptoms syndrome: a lymphoma mimic. Histopathology. 70:1166-1170.
- Footnote 50
-
Drago, F., L. Cogorno, F. Broccolo, G. Ciccarese, and A. Parodi. 2016. A fatal case of DRESS induced by strontium ranelate associated with HHV-7 reactivation. Osteoporos. Int. 27:1261-1264.
- Footnote 51
-
Draz, N., S. Datta, D. P. Webster, and I. Cropley. 2013. Drug reaction with eosinophilia and systemic symptoms (DRESS) syndrome secondary to antituberculosis drugs and associated with human herpes virus-7 (HHV-7). BMJ Case Rep. 2013:10.1136/bcr-2013-010348.
- Footnote 52
-
Kawano, Y., J. I. Kawada, N. Nagai, and Y. Ito. 2019. Reactivation of human herpesviruses 6 and 7 in Kawasaki disease. Mod. Rheumatol. 29:651-655.
- Footnote 53
-
Pormohammad, A., T. Azimi, F. Falah, and E. Faghihloo. 2018. Relationship of human herpes virus 6 and multiple sclerosis: A systematic review and meta-analysis. J. Cell. Physiol. 233:2850-2862.
- Footnote 54
-
Saberi, A., S. Akhondzadeh, and S. Kazemi. 2018. Infectious agents and different course of multiple sclerosis: a systematic review. Acta Neurol. Belg. 118:361-377.
- Footnote 55
-
Caselli, E., M. C. Zatelli, R. Rizzo, S. Benedetti, D. Martorelli, G. Trasforini, E. Cassai, E. C. degli Uberti, D. Di Luca, and R. Dolcetti. 2012. Virologic and immunologic evidence supporting an association between HHV-6 and Hashimoto's thyroiditis. PLoS Pathog. 8:e1002951.
- Footnote 56
-
Wang, Y., L. Ding, Q. Zhu, M. Shu, and Q. Cai. 2018. Common Infections May Lead to Alzheimer's Disease. Virol. Sin. 33:456-458.
- Footnote 57
-
Al-Asmar, R., R. Carroll, J. Ranavaya, N. Mozahem, S. Thiesfeldt, and K. Willenburg. 2021. A rare case of recurrent HHV6 encephalitis in an immunocompetent adult. IDCases 25:e01195.
- Footnote 58
-
Ogata, M., T. Satou, J. Kadota, N. Saito, T. Yoshida, H. Okumura, T. Ueki, K. Nagafuji, S. Kako, N. Uoshima, M. Tsudo, H. Itamura, and T. Fukuda. 2013. Human herpesvirus 6 (HHV-6) reactivation and HHV-6 encephalitis after allogeneic hematopoietic cell transplantation: a multicenter, prospective study. Clin. Infect. Dis. 57:671-681.
- Footnote 59
-
Aoki, J., A. Numata, E. Yamamoto, E. Fujii, M. Tanaka, and H. Kanamori. 2015. Impact of Human Herpesvirus-6 Reactivation on Outcomes of Allogeneic Hematopoietic Stem Cell Transplantation. Biol. Blood Marrow Transplant. 21:2017-2022.
- Footnote 60
-
Dulery, R., J. Salleron, A. Dewilde, J. Rossignol, E. M. Boyle, J. Gay, E. de Berranger, V. Coiteux, J. P. Jouet, A. Duhamel, and I. Yakoub-Agha. 2012. Early human herpesvirus type 6 reactivation after allogeneic stem cell transplantation: a large-scale clinical study. Biol. Blood Marrow Transplant. 18:1080-1089.
- Footnote 61
-
Fernandez-Ruiz, M., D. Kumar, S. Husain, L. Lilly, E. Renner, T. Mazzulli, G. Moussa, and A. Humar. 2015. Utility of a monitoring strategy for human herpesviruses 6 and 7 viremia after liver transplantation: a randomized clinical trial. Transplantation. 99:106-113.
- Footnote 62
-
Chan, P. K., C. K. Li, K. W. Chik, V. Lee, M. M. Shing, K. C. Ng, J. L. Cheung, T. F. Fok, and A. F. Cheng. 2004. Risk factors and clinical consequences of human herpesvirus 7 infection in paediatric haematopoietic stem cell transplant recipients. J. Med. Virol. 72:668-674.
- Footnote 63
-
Berzero, G., G. Campanini, E. Vegezzi, M. Paoletti, A. Pichiecchio, A. M. Simoncelli, A. A. Colombo, P. Bernasconi, O. Borsani, A. Di Matteo, V. Rossi, T. Foiadelli, S. Savasta, F. Compagno, M. Zecca, F. Baldanti, and E. Marchioni. 2021. Human Herpesvirus 6 Encephalitis in Immunocompetent and Immunocompromised Hosts. Neurol Neuroimmunol Neuroinflamm 8.
- Footnote 64
-
Vinnard, C., T. Barton, E. Jerud, and E. Blumberg. 2009. A report of human herpesvirus 6-associated encephalitis in a solid organ transplant recipient and a review of previously published cases. Liver Transpl. 15:1242-1246.
- Footnote 65
-
Sanchez-Ponce, Y., G. Varela-Fascinetto, J. C. Romo-Vazquez, B. Lopez-Martinez, J. L. Sanchez-Huerta, I. Parra-Ortega, E. M. Fuentes-Panana, and A. Morales-Sanchez. 2018. Simultaneous Detection of Beta and Gamma Human Herpesviruses by Multiplex qPCR Reveals Simple Infection and Coinfection Episodes Increasing Risk for Graft Rejection in Solid Organ Transplantation. Viruses. 10:10.3390/v10120730.
- Footnote 66
-
Chua, K. B., N. S. Khairullah, and P. S. Hooi. 1996. Seroepidemiology of human herpesvirus 6 in a population seen in the University Hospital, Kuala Lumpur, Malaysia. Southeast Asian J. Trop. Med. Public Health. 27:91-95.
- Footnote 67
-
Tanaka-Taya, K., T. Kondo, T. Mukai, H. Miyoshi, Y. Yamamoto, S. Okada, and K. Yamanishi. 1996. Seroepidemiological study of human herpesvirus-6 and -7 in children of different ages and detection of these two viruses in throat swabs by polymerase chain reaction. J. Med. Virol. 48:88-94.
- Footnote 68
-
Wyatt, L. S., W. J. Rodriguez, N. Balachandran, and N. Frenkel. 1991. Human herpesvirus 7: antigenic properties and prevalence in children and adults. J. Virol. 65:6260-6265.
- Footnote 69
-
Thawaranantha, D., K. Chimabutra, K. Balachandra, P. Warachit, S. Pantuwatana, R. Inagi, T. Kurata, and K. Yamanishi. 1999. Prevalences of human herpesvirus 6 and human herpesvirus 7 in normal Thai population. Southeast Asian J. Trop. Med. Public Health. 30:259-264.
- Footnote 70
-
Krueger, G. R., B. Koch, N. Leyssens, Z. Berneman, J. Rojo, C. Horwitz, T. Sloots, M. Margalith, J. D. Conradie, S. Imai, I. Urasinski, M. de Bruyere, V. Ferrer Argote, and J. Krueger. 1998. Comparison of seroprevalences of human herpesvirus-6 and -7 in healthy blood donors from nine countries. Vox Sang. 75:193-197.
- Footnote 71
-
Realegeno, S., and U. Pandey. 2022. Human Herpesvirus 6 Infection and Diagnostics. Clinical Microbiology Newsletter 44:83-90.
- Footnote 72
-
Takasawa, K., R. Nakagawa, S. Takishima, K. Moriyama, K. Watanabe, K. Kiyohara, T. Hasegawa, M. Shimohira, K. Kashimada, N. Shimizu, and T. Morio. 2018. Cause of acute encephalitis/encephalopathy in Japanese children diagnosed by a rapid and comprehensive virological detection system and differences in their clinical presentations. Brain Dev. 40:107-115.
- Footnote 73
-
Schwartz, K. L., S. E. Richardson, K. N. Ward, C. Donaldson, D. MacGregor, B. Banwell, S. Mahant, and A. Bitnun. 2014. Delayed primary HHV-7 infection and neurologic disease. Pediatrics. 133:e1541-7.
- Footnote 74
-
Al-Zubeidi, D., M. Thangarajh, S. Pathak, C. Cai, B. L. Schlaggar, G. A. Storch, D. K. Grange, and M. E. Watson Jr. 2014. Fatal human herpesvirus 6-associated encephalitis in two boys with underlying POLG mitochondrial disorders. Pediatr. Neurol. 51:448-452.
- Footnote 75
-
Linthorst, J., M. R. A. Welkers, and E. A. Sistermans. 2023. Clinically relevant DNA viruses in pregnancy. Prenatal Diagnosis 43:457-466.
- Footnote 76
-
Freitas, R. B., T. A. Monteiro, and A. C. Linhares. 2000. Outbreaks of human-herpes virus 6 (HHV-6) infection in day-care centers in Belém, Pará, Brazil. Rev Inst Med Trop Sao Paulo 42:305-11.
- Footnote 77
-
Leibovitch, E., J. E. Wohler, S. M. Cummings Macri, K. Motanic, E. Harberts, M. I. Gaitan, P. Maggi, M. Ellis, S. Westmoreland, A. Silva, D. S. Reich, and S. Jacobson. 2013. Novel marmoset (Callithrix jacchus) model of human Herpesvirus 6A and 6B infections: immunologic, virologic and radiologic characterization. PLoS Pathog. 9:e1003138.
- Footnote 78
-
Reynaud, J. M., and B. Horvat. 2013. Animal models for human herpesvirus 6 infection. Front. Microbiol. 4:174.
- Footnote 79
-
Qavi H.B.. 1999. Possible role of HHV-6 in the enhanced severity of HSV-1 keratitis. In Vivo 13:427-432.
- Footnote 80
-
Reynaud, J. M., J. F. Jégou, J. C. Welsch, and B. Horvat. 2014. Human herpesvirus 6A infection in CD46 transgenic mice: viral persistence in the brain and increased production of proinflammatory chemokines via Toll-like receptor 9. J Virol 88:5421-36.
- Footnote 81
-
Caselli, E., and D. Di Luca. 2007. Molecular biology and clinical associations of Roseoloviruses human herpesvirus 6 and human herpesvirus 7. New Microbiol. 30:173-187.
- Footnote 82
-
Rhoads, M. P., A. S. Magaret, and D. M. Zerr. 2007. Family saliva sharing behaviors and age of human herpesvirus-6B infection. J. Infect. 54:623-626.
- Footnote 83
-
Takahashi, Y., M. Yamada, J. Nakamura, T. Tsukazaki, J. Padilla, T. Kitamura, M. Yoshida, and S. Nii. 1997. Transmission of human herpesvirus 7 through multigenerational families in the same household. Pediatr. Infect. Dis. J. 16:975-978.
- Footnote 84
-
Santpere, G., M. Telford, P. Andrés-Benito, A. Navarro, and I. Ferrer. 2020. The Presence of Human Herpesvirus 6 in the Brain in Health and Disease. Biomolecules 10:1520.
- Footnote 85
-
Hall, C. B., M. T. Caserta, K. C. Schnabel, C. Boettrich, M. P. McDermott, G. K. Lofthus, J. A. Carnahan, and S. Dewhurst. 2004. Congenital infections with human herpesvirus 6 (HHV6) and human herpesvirus 7 (HHV7). J. Pediatr. 145:472-477.
- Footnote 86
-
Ward, K. N., J. J. Gray, and S. Efstathiou. 1989. Brief report: primary human herpesvirus 6 infection in a patient following liver transplantation from a seropositive donor. J. Med. Virol. 28:69-72.
- Footnote 87
-
Agut, H., P. Bonnafous, and A. Gautheret-Dejean. 2015. Laboratory and clinical aspects of human herpesvirus 6 infections. Clin Microbiol Rev 28:313-35.
- Footnote 88
-
Gulve, N., K. Kimmerling, A. D. Johnston, G. R. Krueger, D. V. Ablashi, and B. K. Prusty. 2016. Anti-herpesviral effects of a novel broad range anti-microbial quaternary ammonium silane, K21. Antiviral Res. 131:166-173.
- Footnote 89
-
Eleraky, N. Z., L. N. Potgieter, and M. A. Kennedy. 2002. Virucidal efficacy of four new disinfectants. J. Am. Anim. Hosp. Assoc. 38:231-234.
- Footnote 90
-
Croughan, W. S., and A. M. Behbehani. 1988. Comparative study of inactivation of herpes simplex virus types 1 and 2 by commonly used antiseptic agents. J. Clin. Microbiol. 26:213-215.
- Footnote 91
-
Bailey, A., and M. Longson. 1972. Virucidal activity of chlorhexidine on strains of Herpesvirus hominis, poliovirus, and adenovirus. J. Clin. Pathol. 25:76-78.
- Footnote 92
-
Tyler, R., and G. A. J. Ayliffe. 1987. A surface test for virucidal activity of disinfectants: preliminary study with herpes virus. Journal of Hospital Infection 9:22-29.
- Footnote 93
-
Wallis, C., and J. L. Melnick. 1965. Thermostabilization and thermosensitization of herpesvirus. J. Bacteriol. 90:1632-1637.
- Footnote 94
-
Smith, A., F. Santoro, G. Di Lullo, L. Dagna, A. Verani, and P. Lusso. 2003. Selective suppression of IL-12 production by human herpesvirus 6. Blood 102:2877-2884.
- Footnote 95
-
Nerurkar, L. S., F. West, M. May, D. L. Madden, and J. L. Sever. 1983. Survival of herpes simplex virus in water specimens collected from hot tubs in spa facilities and on plastic surfaces. Jama. 250:3081-3083.
- Footnote 96
-
Mahl, M. C., and C. Sadler. 1975. Virus survival on inanimate surfaces. Can. J. Microbiol. 21:819-823.
- Footnote 97
-
Dayaram, A., M. Franz, A. Schattschneider, A. M. Damiani, S. Bischofberger, N. Osterrieder, and A. D. Greenwood. 2017. Long term stability and infectivity of herpesviruses in water. Sci. Rep. 7:46559.
- Footnote 98
-
Sedlak, R. H., J. A. Hill, T. Nguyen, M. Cho, G. Levin, L. Cook, M. L. Huang, L. Flamand, D. M. Zerr, M. Boeckh, and K. R. Jerome. 2016. Detection of Human Herpesvirus 6B (HHV-6B) Reactivation in Hematopoietic Cell Transplant Recipients with Inherited Chromosomally Integrated HHV-6A by Droplet Digital PCR. J. Clin. Microbiol. 54:1223-1227.
- Footnote 99
-
Yip, C. C. Y., S. Sridhar, A. K. W. Cheng, A. M. Y. Fung, V. C. C. Cheng, K. H. Chan, and K. Y. Yuen. 2017. Comparative evaluation of a laboratory developed real-time PCR assay and the RealStar((R)) HHV-6 PCR Kit for quantitative detection of human herpesvirus 6. J. Virol. Methods. 246:112-116.
- Footnote 100
-
Geraudie, B., M. Charrier, P. Bonnafous, D. Heurte, M. Desmonet, M. A. Bartoletti, C. Penasse, H. Agut, and A. Gautheret-Dejean. 2012. Quantitation of human herpesvirus-6A, -6B and -7 DNAs in whole blood, mononuclear and polymorphonuclear cell fractions from healthy blood donors. J. Clin. Virol. 53:151-155.
- Footnote 101
-
Higashimoto, Y., A. Ohta, Y. Nishiyama, M. Ihira, K. Sugata, Y. Asano, D. L. Peterson, D. V. Ablashi, P. Lusso, and T. Yoshikawa. 2012. Development of a human herpesvirus 6 species-specific immunoblotting assay. J. Clin. Microbiol. 50:1245-1251.
- Footnote 102
-
Tzannou, I., A. Papadopoulou, S. Naik, K. Leung, C. A. Martinez, C. A. Ramos, G. Carrum, G. Sasa, P. Lulla, A. Watanabe, M. Kuvalekar, A. P. Gee, M. F. Wu, H. Liu, B. J. Grilley, R. A. Krance, S. Gottschalk, M. K. Brenner, C. M. Rooney, H. E. Heslop, A. M. Leen, and B. Omer. 2017. Off-the-Shelf Virus-Specific T Cells to Treat BK Virus, Human Herpesvirus 6, Cytomegalovirus, Epstein-Barr Virus, and Adenovirus Infections After Allogeneic Hematopoietic Stem-Cell Transplantation. J. Clin. Oncol. 35:3547-3557.
- Footnote 103
-
Ashshi, A. M., P. E. Klapper, and R. J. Cooper. 2003. Detection of human cytomegalovirus, human herpesvirus type 6 and human herpesvirus type 7 in urine specimens by multiplex PCR. Journal of Infection 47:59-64.
- Footnote 104
-
Government of Canada. November 2023. ePATHogen - Risk Group Database.
- Footnote 105
-
Public Health Agency of Canada. 2018. Human Pathogens and Toxins Act (HPTA) (S.C. 2009, c.24).