Porphyromonas gingivalis: Infectious substances pathogen safety data sheet
Section I – Infectious agent
Name
Porphyromonas gingivalis
Agent type
Bacteria
Taxonomy
Family
Porphyromonadaceae
Genus
Porphyromonas
Species
Gingivalis
Synonym or cross-reference
Also known as Bacteroides gingivalisFootnote 1. Formerly, Bacteroides melaninogenicusFootnote 2.
Characteristics
Brief description
P. gingivalis are Gram-negative, non-motile coccobacilli that measure 0.5 µm by 1.0 to 3.0 µmFootnote 3. They are obligate anaerobes favouring high humidity environments and requiring protoheme; as such, cells are often grown on blood agar at 37°CFootnote 3Footnote 4. Colonies initially appear light in colour, and after 4 to 8 days, turn deep red or black due to cellular accumulation of ironFootnote 4Footnote 5.
Properties
P. gingivalis has a variety of virulence determinants, including capsule, fimbriae, lipopolysaccharides (LPS), hemagglutinins, and proteinases (e.g., gingipains)Footnote 5Footnote 6Footnote 7. The significant proteolytic activity of P. gingivalis aids in survival and growth in the host and is strongly implicated in disease progressionFootnote 6. Virulence varies among strains due to differences in invasive ability and proteolytic activitiesFootnote 8Footnote 9Footnote 10.
Section II – Hazard identification
Pathogenicity and toxicity
P. gingivalis colonizes the gingival sulcus of the human oral cavity, but has been recovered from the tongue, tonsils, and saliva. P. gingivalis is found in 10 – 25% of periodontically healthy individuals, and in 69-79% of those with periodontal diseaseFootnote 11Footnote 12Footnote 13. Presence of P. gingivalis is associated with initiation and progression of generalized aggressive periodontitis, which is considered a chronic condition that can persist for many years if left untreatedFootnote 3Footnote 5Footnote 14. Aggressive periodontitis is characterised by rapid attachment loss and bone destruction in individuals that are otherwise clinically healthy. Aggressive periodontitis is more likely to occur in younger age groups and was originally called early-onset periodontitisFootnote 15. Severity of periodontal disease ranges from mild inflammation of the gums and supporting structures of teeth, to chronic tissue destruction that results in the formation of a periodontal pocket and ultimately, tooth lossFootnote 5Footnote 6. Other symptoms of periodontitis include bleeding gums and alveolar bone resorptionFootnote 16.
P. gingivalis has also been implicated in lung abscesses, aspiration pneumonia, and pulmonary infectionsFootnote 3Footnote 17. Studies suggest that P. gingivalis-associated periodontal disease represents a risk factor for cardiovascular disease and is associated with low birth weight deliveriesFootnote 18Footnote 19Footnote 20Footnote 21. Colonization of P. gingivalis and periodontitis are associated with higher incidence of mortality in patients with orodigestive cancerFootnote 22. P. gingivalis has been linked to other systemic diseases such as atherosclerosis, hypertension, adverse pregnancy outcomes, inflammatory bowel disease, diabetes mellitus, non-alcoholic fatty liver disease, rheumatoid arthritis, and Alzheimer's diseaseFootnote 16Footnote 23.
P. gingivalis is not known to cause disease in natural animal hosts, although experimentally infected animals can develop periodontal diseaseFootnote 24Footnote 25.
Epidemiology
Disease caused by P. gingivalis is maintained in human populationsFootnote 24. P. gingivalis is associated with severe (chronic) and aggressive periodontitisFootnote 26. Severe periodontitis affects 5-20% of adults globallyFootnote 27Footnote 28, while prevalence of aggressive periodontitis is 0.1-5%Footnote 26Footnote 27Footnote 29. The incidence rate of severe periodontitis varies among countries from 251 to 1,428 new cases per 100,000 person-yearsFootnote 28. Among adults 30 or older in the United States, populations with the highest prevalence of total periodontitis include men (50.2%), adults below the federal poverty level (60.4%), and current smokers (62.4%)Footnote 30.
Diabetes, HIV and Down syndrome are associated with increased rates of periodontal diseaseFootnote 5Footnote 31Footnote 32. Poor oral hygiene and aging are also factors which may predispose to P. gingivalis infectionFootnote 33.
Host range
Natural host(s)
HumansFootnote 24.
Other host(s)
In an experimental setting, P. gingivalis can cause infection in various animals (e.g., rodents, rabbits, pigs, dogs, non-human primates)Footnote 34Footnote 35. Non-human primates orally challenged with P. gingivalis can develop periodontal diseaseFootnote 36.
Infectious dose
Unknown.
Incubation period
Unknown.
Communicability
P. gingivalis can spread via saliva, direct mucosal contact and intimate contact, but transmission does not always result in colonizationFootnote 37Footnote 38. Shared toothbrushes and eating utensils are possible vehicles of transmissionFootnote 25Footnote 39Footnote 40. Contact with a P. gingivalis-infected family member increases the risk of P. gingivalis colonization for other family membersFootnote 40.
Section III – Dissemination
Reservoir
Humans.
Zoonosis
None.
Vectors
None.
Section IV – Stability and viability
Drug susceptibility/resistance
P. gingivalis is generally susceptible to amoxicillin-clavulanateFootnote 41Footnote 42Footnote 43, piperacillin-tazobactamFootnote 44, cephaclorFootnote 41, cephalosporinsFootnote 44, tetracycline and doxycyclineFootnote 41Footnote 43, clindamycinFootnote 41Footnote 43, imipenemFootnote 44, metronidazoleFootnote 41Footnote 44, moxifloxacinFootnote 45Footnote 46, azithromycinFootnote 45, and cefoxitinFootnote 45.
Some P. gingivalis isolates are resistant to ciprofloxacinFootnote 43, erythromycinFootnote 41Footnote 43, and azithromycinFootnote 41 as well as other antibiotics such as metronidazole (21.56%), amoxicillin (25.49%), and clindamycin (23.52%)Footnote 46Footnote 47. Over a 20 year period, in vitro resistance of P. gingivalis increased significantly to clindamycin (15 fold increase to 9.3% in patients) and amoxicillin (28 fold increase to 2.8% of patients)Footnote 46Footnote 48.
Susceptibility to disinfectants
Hypochlorous acid, sodium hypochlorite, 70% ethanol, and chlorhexidine are effective against P. gingivalis biofilmFootnote 49. Treatment with ozonated water (2mg/L)Footnote 50, nitric oxideFootnote 51, povidone iodine solutionsFootnote 50, and quaternary ammonium compounds, such as cetylpyridinium chloride (0.05%)Footnote 52, cause a significant reduction in viable P. gingivalis cells. Treatment with chlorine dioxide gas is effective against P. gingivalis cells grown on materials with smooth surfacesFootnote 53.
Antiseptic mouth washes are effective at killing P. gingivalis within a biofilmFootnote 54.
Physical inactivation
UV irradiation has a bactericidal effect on P. gingivalis cellsFootnote 51. Application of moist heat (121°C for 15 minutes) and dry heat (170°C for 1 hour) are generally effective at eliminating most bacteriaFootnote 55. Low-temperature Atmospheric Pressure Plasma has been shown to have a significant inactivation effect on P. gingivalisFootnote 56. Photodynamic and photothermal therapy are also successful in significantly eradicating P. gingivalisFootnote 57.
Survival outside host
Other oral pathogens survive for less than 8 hours outside the oral cavityFootnote 39. Generally, bacterial persistence on inanimate surfaces depends on environmental conditions, such as relative humidity, temperature, biofilm, and surface typeFootnote 58.
Section V – First aid/medical
Surveillance
Diagnosis is accomplished through the monitoring of clinical symptoms. Oral specimens are cultured on selective agar containing colistin, bacitracin and nalidixic acid to inhibit growth of other bacteria commonly found in the oral cavityFootnote 59. P. gingivalis can be identified using PCR-based or biochemical detection systemsFootnote 60Footnote 61Footnote 62.
Note: The specific recommendations for surveillance in the laboratory should come from the medical surveillance program, which is based on a local risk assessment of the pathogens and activities being undertaken, as well as an overarching risk assessment of the biosafety program as a whole. More information on medical surveillance is available in the Canadian Biosafety Handbook.
First aid/treatment
Infections can be treated with appropriate antibiotics and/or dental procedures, such as surface debridement, to remove plaque bacteriaFootnote 63.
Note: The specific recommendations for first aid/treatment in the laboratory should come from the post-exposure response plan, which is developed as part of the medical surveillance program. More information on the post-exposure response plan can be found in the Canadian Biosafety Handbook.
Immunization
There is no vaccine currently available; however, vaccine development for P. gingivalis is an active area of researchFootnote 63.
Note: More information on the medical surveillance program can be found in the Canadian Biosafety Handbook and by consulting the Canadian Immunization Guide.
Prophylaxis
None.
Note: More information on prophylaxis as part of the medical surveillance program can be found in the Canadian Biosafety Handbook.
Section VI – Laboratory hazard
Laboratory-acquired infections
None reported to date.
Note: Please consult the Canadian Biosafety Standard and Canadian Biosafety Handbook for additional details on requirements for reporting exposure incidents. A Canadian biosafety guideline describing notification and reporting procedures is also available.
Sources/specimens
Saliva, dental plaque, cardiovascular specimensFootnote 64Footnote 65.
Primary hazards
Mucous membrane exposure and accidental parenteral inoculation.
Special hazards
None.
Section VII – Exposure controls/personal protection
Risk group classification
P. gingivalis is a Risk Group 2 human pathogen and a Risk Group 1 animal pathogenFootnote 66.
Containment requirements
Containment Level 2 facilities, equipment, and operational practices as outlined in the Canadian Biosafety Standard are required for work involving infectious or potentially infectious materials, cultures, or animals.
Protective clothing
The applicable Containment Level 2 requirements for personal protective equipment and clothing outlined in the Canadian Biosafety Standard are to be followed. At minimum, it is recommended to use a labcoat and closed-toe cleanable shoes, gloves when direct skin contact with infected materials or animals is unavoidable, and eye protection where there is a known or potential risk of exposure to splashes.
A local risk assessment will identify the appropriate hand, foot, head, body, eye/face, and respiratory protection, and the personal protective equipment requirements for the containment zone and work activities must be documented.
Other precautions
A biological safety cabinet (BSC) or other primary containment devices to be used for activities with open vessels, based on the risks associated with the inherent characteristics of the regulated material, the potential to produce infectious aerosols or aerosolized toxins, the handling of high concentrations of regulated materials, or the handling of large volumes of regulated materials.
Use of needles and syringes are to be strictly limited. Bending, shearing, re-capping, or removing needles from syringes to be avoided, and if necessary, performed only as specified in standard operating procedures (SOPs). Additional precautions are required with work involving animals or large-scale activities.
Additional information
For diagnostic laboratories handling primary specimens that may contain P. gingivalis, the following resources may be consulted:
Section VIII – Handling and storage
Spills
Allow aerosols to settle. Wearing protective clothing, gently cover the spill with absorbent paper towel and apply suitable disinfectant, starting at the perimeter and working towards the centre. Allow sufficient contact time with disinfectant before clean up (Canadian Biosafety Handbook).
Disposal
All materials/substances that have come in contact with the regulated materials to be completely decontaminated before they are removed from the containment zone or standard operating procedures (SOPs) to be in place to safely and securely move or transport waste out of the containment zone to a designated decontamination area / third party. This can be achieved by using decontamination technologies and processes that have been demonstrated to be effective against the regulated material, such as chemical disinfectants, autoclaving, irradiation, incineration, an effluent treatment system, or gaseous decontamination (Canadian Biosafety Handbook).
Storage
The applicable Containment Level 2 requirements for storage outlined in the Canadian Biosafety Standard are to be followed. Primary containers of regulated materials removed from the containment zone to be labelled, leakproof, impact resistant, and kept either in locked storage equipment or within an area with limited access.
Section IX – Regulatory and other information
Canadian regulatory information
Controlled activities with P. gingivalis require a Pathogen and Toxin licence issued by the Public Health Agency of Canada.
The following is a non-exhaustive list of applicable designations, regulations, or legislations:
- Human Pathogen and Toxins Act and Human Pathogens and Toxins Regulations
- Transportation of Dangerous Goods Act and Regulations
Last file update
February, 2024
Prepared by
Centre for Biosecurity, Public Health Agency of Canada.
Disclaimer
The scientific information, opinions, and recommendations contained in this Pathogen Safety Data Sheet have been developed based on or compiled from trusted sources available at the time of publication. Newly discovered hazards are frequent and this information may not be completely up to date. The Government of Canada accepts no responsibility for the accuracy, sufficiency, or reliability or for any loss or injury resulting from the use of the information.
Persons in Canada are responsible for complying with the relevant laws, including regulations, guidelines and standards applicable to the import, transport, and use of pathogens in Canada set by relevant regulatory authorities, including the Public Health Agency of Canada, Health Canada, Canadian Food Inspection Agency, Environment and Climate Change Canada, and Transport Canada. The risk classification and related regulatory requirements referenced in this Pathogen Safety Data Sheet, such as those found in the Canadian Biosafety Standard, may be incomplete and are specific to the Canadian context. Other jurisdictions will have their own requirements.
Copyright © Public Health Agency of Canada, 2024, Canada
References
- Footnote 1
-
Catalogue of Life. 2015. Porphyromonas gingivalis.
- Footnote 2
-
Kuramitsu, H. K. 2003. Molecular genetic analysis of the virulence of oral bacterial pathogens: an historical perspective. Critical Reviews in Oral Biology & Medicine. 14:331-344.
- Footnote 3
-
Summanen, P., and S. M. Finegold. 2012. Genus I. Porphyromonas, p. 62. N. R. Krieg, J. T. Staley, D. R. Brown, B. P. Hedlund, B. J. Paster, N. L. Ward, W. Ludwig, and W. B. Whitman (eds.), Bergey's Manual of Systematic Bacteriology, Second ed., vol. 4. Springer.
- Footnote 4
-
Masuda, T., Y. Murakami, T. Noguchi, and F. Yoshimura. 2006. Effects of various growth conditions in a chemostat on expression of virulence factors in Porphyromonas gingivalis. Appl. Environ. Microbiol. 72:3458-3467.
- Footnote 5
-
Gibson, F. C., and C. A. Genco. 2006. The Genus Porphyromonas, p. 428. M. Dworkin, S. Falkow, E. Rosenberg, K. Schleifer, and E. Stackebrandt (eds.), The Prokaryotes: A Handbook on the Biology of Bacteria, Third ed., vol. 7. Springer.
- Footnote 6
-
Holt, S. C., and J. L. Ebersole. 2000. Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia: the "red complex", a prototype polybacterial pathogenic consortium in periodontitis. Periodontol. 2000. 38:72-122.
- Footnote 7
-
Bostanci, N., and G. N. Belibasakis. 2012. Porphyromonas gingivalis: an invasive and evasive opportunistic oral pathogen. FEMS Microbiol. Lett. 333:1-9.
- Footnote 8
-
Griffen, A. L., S. R. Lyons, M. R. Becker, M. L. Moeschberger, and E. J. Leys. 1999. Porphyromonas gingivalis Strain Variability and Periodontitis. J. Clin. Microbiol. 37:4028-4033.
- Footnote 9
-
Dorn, B. R., J. N. Burks, K. N. Seifert, and A. Progulske-Fox. 2000. Invasion of endothelial and epithelial cells by strains of Porphyromonas gingivalis. FEMS Microbiol. Lett. 187:139-144.
- Footnote 10
-
Baek, K. J., S. Ji, Y. C. Kim, and Y. Choi. 2015. Association of the invasion ability of Porphyromonas gingivalis with the severity of periodontitis. Virulence. 6:274-281.
- Footnote 11
-
Carrouel, F., S. Viennot, J. Santamaria, P. Veber, and D. Bourgeois. 2016. Quantitative Molecular Detection of 19 Major Pathogens in the Interdental Biofilm of Periodontally Healthy Young Adults. Front. Microbiol. 7:10.3389/fmicb.2016.00840.
- Footnote 12
-
Griffen, A. L., M. R. Becker, S. R. Lyons, M. L. Moeschberger, and E. J. Leys. 1998. Prevalence of Porphyromonas gingivalis and periodontal health status. J. Clin. Microbiol. 36:3239-3242.
- Footnote 13
-
van Winkelhoff, A. J., B. G. Loos, van der Reijden, W. A., and U. van der Velden. 2002. Porphyromonas gingivalis, Bacteroides forsythus and other putative periodontal pathogens in subjects with and without periodontal destruction. J Clin Periodontol. 29:1023.
- Footnote 14
-
How, K. Y., Song, K. P., and Chan, K. G. 2016. Porphyromonas gingivalis: An overview of periodontopathic pathogen below the gum line. Front Microbiol. 7:53.
- Footnote 15
-
Albandar, J. M. 2014. Aggressive periodontitis: case definition and diagnostic criteria. Periodontol. 2000. 65:13-26.
- Footnote 16
-
Li, C., Yu, R., and Ding, Y. 2022. Association between Porphyromonas Gingivalis and systemic diseases: Focus on T cells-mediated adaptive immunity. Front Cell Infect Microbiol. 12:1026457.
- Footnote 17
-
Benedyk, M., P. M. Mydel, N. Delaleu, K. Plaza, K. Gawron, A. Milewska, K. Maresz, J. Koziel, K. Pyrc, and J. Potempa. 2016. Gingipains: Critical Factors in the Development of Aspiration Pneumonia Caused by Porphyromonas gingivalis. J. Innate Immun. 8:185-198.
- Footnote 18
-
Tonetti, M. S., S. Jepsen, L. Jin, and J. Otomo-Corgel. 2017. Impact of the global burden of periodontal diseases on health, nutrition and wellbeing of mankind: A call for global action. J. Clin. Periodontol. 44:456-462.
- Footnote 19
-
Beck, J. D., S. Offenbacher, R. Williams, P. Gibbs, and R. Garcia. 1998. Periodontitis: a risk factor for coronary heart disease? Ann. Periodontol. 3:127-141.
- Footnote 20
-
Dasanayake, A. P., D. Boyd, P. N. Madianos, S. Offenbacher, and E. Hills. 2001. The association between Porphyromonas gingivalis-specific maternal serum IgG and low birth weight. J. Periodontol. 72:1491-1497.
- Footnote 21
-
Ali, T. B., and K. Z. Abidin. 2012. Relationship of periodontal disease to pre-term low birth weight infants in a selected population--a prospective study. Community Dent. Health. 29:100-105.
- Footnote 22
-
Ahn, J., S. Segers, and R. B. Hayes. 2012. Periodontal disease, Porphyromonas gingivalis serum antibody levels and orodigestive cancer mortality. Carcinogenesis. 33:1055-1058.
- Footnote 23
-
Olsen, I., Singhrao, S. K., and Potempa, J. 2018. Citrullination as a plausible link to periodontitis, rheumatoid arthritis, atherosclerosis and Alzheimer's disease. J Oral Microbiol. 10:1487742.
- Footnote 24
-
Genco, C. A., T. Van Dyke, and S. Amar. 1998. Animal models for Porphyromonas gingivalis-mediated periodontal disease. Trends Microbiol. 6:444-449.
- Footnote 25
-
Van Winkelhoff, A. J., and K. Boutaga. 2005. Transmission of periodontal bacteria and models of infection. J. Clin. Periodontol. 32 Suppl 6:16-27.
- Footnote 26
-
Rylev, M., and M. Kilian. 2008. Prevalence and distribution of principal periodontal pathogens worldwide. J. Clin. Periodontol. 35:346-361.
- Footnote 27
-
Petersen, P. E., D. Bourgeois, H. Ogawa, S. Estupinan-Day, and C. Ndiaye. 2005. The global burden of oral diseases and risks to oral health. Bull. World Health Organ. 83:661-669.
- Footnote 28
-
Kassebaum, N. J., E. Bernabe, M. Dahiya, B. Bhandari, C. J. Murray, and W. Marcenes. 2014. Global burden of severe periodontitis in 1990-2010: a systematic review and meta-regression. J. Dent. Res. 93:1045-1053.
- Footnote 29
-
Susin, C., A. N. Haas, and J. M. Albandar. 2014. Epidemiology and demographics of aggressive periodontitis. Periodontol. 2000. 65:27-45.
- Footnote 30
-
Eke, P. I., Thornton-Evans, G. O., Wei, L., Borgnakke, W. S., Dye, B. A., and Genco, R. J. 2018. Periodontitis in US Adults: National Health and Nutrition Examination Survey 2009-2014. J Am Dent Assoc. 149:576-588.e6.
- Footnote 31
-
Amano, A., J. Murakami, S. Akiyama, and I. Morisaki. 2008. Etiologic factors of early-onset periodontal disease in Down syndrome. Japanese Dental Science Review. 44:118-127.
- Footnote 32
-
Katz, P. P., M. R. Wirthlin Jr, S. M. Szpunar, J. V. Selby, S. J. Sepe, and J. A. Showstack. 1991. Epidemiology and prevention of periodontal disease in individuals with diabetes. Diabetes Care. 14:375-385.
- Footnote 33
-
Olsen, I., and Singhrao, S. K. 2019. Poor Oral Health and Its Neurological Consequences: Mechanisms of Porphyromonas gingivalis Involvement in Cognitive Dysfunction. Curr Oral Health Rep. 6:120–129.
- Footnote 34
-
Oz, H. S., and D. A. Puleo. 2011. Animal models for periodontal disease. J. Biomed. Biotechnol. 2011.
- Footnote 35
-
Polak, D., A. Wilensky, L. Shapira, A. Halabi, D. Goldstein, E. I. Weiss, and Y. Houri-Haddad. 2009. Mouse model of experiemental periodontitis induced by Porphyromonas gingivalis / Fusobacterium nucleatum infection: bone loss and host response. J. Clin. Periodontol. 36:406-410.
- Footnote 36
-
Holt, S. C., J. Ebersole, J. Felton, M. Brunsvold, and K. S. Kornman. 1988. Implantation of Bacteroides gingivalis in nonhuman primates initiates progression of periodontitis. Science. 239:55-57.
- Footnote 37
-
Asikainen, S., and C. Chen. 1999. Oral ecology and person-to-person transmission of Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis. Periodontol. 2000. 20:65-81.
- Footnote 38
-
Gibson, F. C., Genco, C. A. 2006. The Genus Porphyromonas. Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K. H., and Stackebrandt, E. (eds) The Prokaryotes. Springer, New York, NY.
- Footnote 39
-
Quirynen, M., M. de Soete, M. Pauwels, K. Goossens, W. Teughels, J. van Eldere, and D. van Steenberghe. 2001. Bacterial survival rate on tooth- and interdental brushes in relation to the use of toothpaste. J. Clin. Periodontol. 28:1106-1114.
- Footnote 40
-
Tuite-McDonnell, M., A. L. Griffen, M. L. Moeschberger, R. E. Dalton, P. A. Fuerst, and E. J. Leys. 1997. Concordance of Porphyromonas gingivalis colonization in families. J. Clin. Microbiol. 35:455-461.
- Footnote 41
-
Jacinto, R. C., B. P. Gomes, H. N. Shah, C. C. Ferraz, A. A. Zaia, and F. J. Souza-Filho. 2006. Incidence and antimicrobial susceptibility of Porphyromonas gingivalis isolated from mixed endodontic infections. Int. Endod. J. 39:62-70.
- Footnote 42
-
Japoni, A., A. Vasin, S. Noushadi, F. Kiany, S. Japoni, and A. Alborzi. 2011. Antibacterial susceptibility patterns of Porphyromonas gingivalis isolated from chronic periodontitis patients. Med. Oral Patol. Oral Cir. Bucal. 16:e1031-5.
- Footnote 43
-
Lakhssassi, N., N. Elhajoui, J. P. Lodter, J. L. Pineill, and M. Sixou. 2005. Antimicrobial susceptibility variation of 50 anaerobic periopathogens in aggressive periodontitis: an interindividual variability study. Oral Microbiol. Immunol. 20:244-252.
- Footnote 44
-
Sakamoto, M. 2014. The Family Porphyromonadaceae, p. 811. E. Rosenberg, E. F. DeLong, S. Lory, E. Stackebrandt, and F. Thompson (eds.), The Prokaryotes - Other Major Lineages of Bacteria and the Archaea. Springer.
- Footnote 45
-
Conrads, G., Klomp, T., Deng, D., Wenzler, J. S., Braun, A., and Abdelbary, M. M. H. 2021. The Antimicrobial Susceptibility of Porphyromonas gingivalis: Genetic Repertoire, Global Phenotype, and Review of the Literature. Antibiotics (Basel). 10:1438.
- Footnote 46
-
Ardila, C. M., and Bedoya-García, J. A. 2020. Antimicrobial resistance of Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis and Tannerella forsythia in periodontitis patients. J Glob Antimicrob Resist. 22:215-218.
- Footnote 47
-
Carrol, D. H., Chassagne, F., Dettweiler, M., and Quave, C. L. 2020. Antibacterial activity of plant species used for oral health against Porphyromonas gingivalis. PLoS One. 15:e0239316.
- Footnote 48
-
Rams, T. E., Sautter, J. D., and van Winkelhoff, A. J. 2023. Emergence of Antibiotic-Resistant Porphyromonas gingivalis in United States Periodontitis Patients. Antibiotics (Basel). 12:1584
- Footnote 49
-
Chen, C., C. -. Chen, and S. -. DIng. 2016. Effectiveness of hypochlorous acid to reduce the biofilms on titanium alloy surfaces in vitro. Int. J. Mol. Sci. 17:1161.
- Footnote 50
-
Nakagawa, T., Y. Hosaka, K. Ishihara, T. Hiraishi, S. Sato, T. Ogawa, and K. Kamoi. 2006. The efficacy of povidone-iodine products against periodontopathic bacteria. Dermatology. 212 Suppl 1:109-111.
- Footnote 51
-
Takada, A., K. Matsushita, S. Horioka, Y. Furuichi, and Y. Sumi. 2017. Bactericidal effects of 310Â nm ultraviolet light-emitting diode irradiation on oral bacteria. BMC Oral Health. 17:10.1186/s12903-017-0382-5.
- Footnote 52
-
Sreenivasan, P. K., V. I. Haraszthy, and J. J. Zambon. 2013. Antimicrobial efficacy of 0.05% cetylpyridinium chloride mouthrinses. Lett. Appl. Microbiol. 56:14-20.
- Footnote 53
-
Kubota, R., S. Osato, I. Kuroyama, T. Ogawa, and S. Nakajima. 2005. Efficacy of Chlorine Dioxide Gas against Porphyromonas gingivalis. J Jap Soc Oral Implant. 18:222-228.
- Footnote 54
-
Bercy, P., and Lasserre, J. 2007. Susceptibility to various oral antiseptics of Porphyromonas gingivalis W83 within a biofilm. Adv Ther. 24:1181-91.
- Footnote 55
-
Hancock, C. O. 2013. Heat Sterilization, p. 277-293. A. P. Fraise, P. A. Lambert, and J. Y. Maillard (eds.), Russell, Hugo & Ayliffe's: Principles and Practice of Disinfection, Preservation and Sterilization, Fifth Edition. Wiley-Blackwell.
- Footnote 56
-
Mahasneh, A., Darby, M., Tolle, S., Hynes, W., Laroussi, M., and Karakas, E. 2011. Inactivation of Porphyromonas gingivalis by Low-Temperature Atmospheric Pressure Plasma. Plasma Medicine. 1:191-204.
- Footnote 57
-
Fekrazad, R., Khoei, F., Bahador, A., and Hakimiha, N. 2020. Comparison of different modes of photo-activated disinfection against Porphyromonas gingivalis: An in vitro study. Photodiagnosis Photodyn Ther. 32:101951.
- Footnote 58
-
Kramer, A., and O. Assadian. 2014. Survival of microorganisms on inanimate surfaces, p. 7. G. Borkow (ed.), Use of Biocidal Surfaces for Reduction of Healthcare Acquired Infections. Springer.
- Footnote 59
-
Hunt, D. E., J. V. Jones, and V. R. Dowell Jr. 1986. Selective medium for the isolation of Bacteroides gingivalis. J. Clin. Microbiol. 23:441-445.
- Footnote 60
-
Sakamoto, M., Y. Takeuchi, M. Umeda, I. Ishikawa, and Y. Benno. 2001. Rapid detection and quantification of five periodontopathic bacteria by real-time PCR. Microbiol. Immunol. 45:39-44.
- Footnote 61
-
Riggio, M. P., T. W. Macfarlane, D. Mackenzie, A. Lennon, A. J. Smith, and D. Kinane. 1996. Comparison of polymerase chain reaction and culture methods for detection of Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis in subgingival plaque samples. J. Periodontal. Res. 31:496-501.
- Footnote 62
-
Gerits, E., N. Verstraeten, and J. Michiels. 2017. New approaches to combat Porphyromonas gingivalis biofilms. J. Oral Microbiol. 9:1300366.
- Footnote 63
-
O'Brien-Simpson, N. M., J. A. Holden, J. C. Lenzo, Y. Tan, G. C. Brammar, K. A. Walsh, W. Singleton, R. K. Orth, N. Slakeski, K. J. Cross, I. B. Darby, D. Becher, T. Rowe, A. B. Morelli, A. Hammet, A. Nash, A. Brown, B. Ma, D. Vingadassalom, J. McCluskey, H. Kleanthous, and E. C. Reynolds. 2016. A therapeutic Porphyromonas gingivalis gingipain vaccine induces neutralising IgG1 antibodies that protect against experimental periodontitis. Npj Vaccines 1, 16022
- Footnote 64
-
Oliveira, F. A., C. P. Forte, P. G. Silva, C. B. Lopes, R. C. Montenegro, A. K. Santos, C. R. Sobrinho, M. R. Mota, F. B. Sousa, and A. P. Alves. 2015. Molecular Analysis of Oral Bacteria in Heart Valve of Patients With Cardiovascular Disease by Real-Time Polymerase Chain Reaction. Medicine (Baltimore). 94:e2067.
- Footnote 65
-
Nakano, K., H. Nemoto, R. Nomura, H. Inaba, H. Yoshioka, K. Taniguchi, A. Amano, and T. Ooshima. 2009. Detection of oral bacteria in cardiovascular specimens. Oral Microbiol. Immunol. 24:64-68.
- Footnote 66
-
Public Health Agency of Canada. 2015. Human Pathogens and Toxins Act (HPTA).
Page details
- Date modified: